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CHAPTER 1

INTRODUCTION

The basic premise upon. which this report rests is that the devel-

opment and advancement of theory in education, the generation of data

and Cheory-directly relevant to school programs and individual class-

rooms, and the opportunity to examine complex educational questiond

await the development of an appropriate methodology."'Such a premise

is similar to that, made by George Mandler (1967) in discussing con-

- temporary approaches to the experimental study of learning processes.

He.suggested, for example, that contemporary research on human learn-

ing empbasites an-"active," rather than a "passive" organism, and a .

. shift to the study of "complex" Processes -- without the necessity of

conducting "complex experiments.? The latter coup was attributed to

the development of and advances in our" knowledge concerning research,

methods.

Similar types of comments have been made by Fiske (1973) in'

discussing the need for process-type research in the personality

area. He suggests, "the\,pentral but only vaguely recognized need is

for intensive work on to baSic strategy of psychological research,

especially in the personality domain," and further asks, "can we

study the important psychological processes in the laboratory or

testing room? How can we be sure of the occurrence of the postulated

process? Or do we define each specific process simply as that which

we presume to occur between a- particular stimulus and a designated

type of response." Fiske also suggests that laboratory research, in

addition to facing problems regarding the replicability of process-

type phenomena, faces an almost insurmountable problem--- that of

determining the degree to which the findings are generalizable to

behavior in. general.

Wohlwill (1973) has also addressed such questions from/the per-

spective of developmental psychology. In addressing the question

whether developmental research belongs in an "experimental' or "dif-.7

ferential" camp, he suggests, "it turns out that the study, of develop-.

mental change does not readily fiteither.of the two models, at least

in their simplest form. On the one.hand,,the study of age changes

in behavior differs, in certain important respects, from "comparative,

differential investigations involving other interpersonal:Characteris-

tics, e.g., the study of sex differences. On the other hand, even

when development is subjected to direct experirgental attack by mani-

pulating the conditions of experience in a controlled manner, the

situation still deviates in some critical ways ffom that which dbn-

fronts the experimentalist dealing with nondevelopme al problems.

Thus,'Qiceoncern with development gives rise to very p ticular

requirements and considerations as regards experimental me odology,

research design, and scientific inference. To put it succin ly:
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The canons of tie, scientific method, as.,Arehave,been worked' out for
the field of psychology at large, require modification when applied

to d'eTlopmental problems." 0.6-17)

- The-comments of Mandler (1967), Fiske ('1973), and Wohlwil,1 (1973)

are uarlyN4gp.ropriate to educational research, not only because of

the pa tiar-aveilap of content across these disciplines, or the common

calf fo he d6e1.0pment of'ne4; methods, but also because each has

called for e,siudy,of the respective phenomena in the environmental

contexts h they occur and because each calls for the further

develdpmen" '0 re earch methods which provide for direct, unconfounded,

and gene'en alit a 0 estimates of these processes as they change with time.

NAL AND CROSS-SECTIONAL METHODOLOGY

Some history of skid the Interdisciplinary Character of Longitudinal Research

I As ;Sontag (1971) has noted, longitueine,1 methodology is by no means

under the exclusive pUrview of developmental psychology. It's' roots are

found in a variety of disciplines including. demography and multiple

social 'sciences, life sciences, And phy§ical sciences. Yet, he

suggests that the term longitudinal research evokes free associations

of a "womb-to-tomb" research plan, innequste researah',design,"inexact

measurement, and an inadequate and inordinately expensive research

product. Yet, and,somewhtt paradoxical, the longitudinal method and the

superiority of fdngitudinal datsover cross;sectional,datai remains

essentially unquestioned-in educational'and developmeneal research;

e.g., Hilton & Patrick (1971). Similarly, cross - sectional

is seen primarily as a convenient bit approximaee substitute for

longitudinal measurement.

The qualms of scientists 'regarding the us oriongitudinal designs'

can be traced to a number of relevant problems. example, the use

of a,longitudinal design usually requires that the experimenter "age

. with his subjects, the-fact that the experiMenter cannot: control the

subjects' experiences between the several times.of testing;-Jubject,

attrition, and perhaps more important, the fact that the longitudinal

method commits the experimenter to a specific design and the use of "N\

specific measurement instruments over the duration of the study. - --N-
.

Such difficulties haVe been noted as early as 1741 by SuiSmilch who. .

also, by the way, commented on the problems of. generalizability of

using what we now call cross-sectional methods.

Quetelet (1835) and Galton (1883) were advocates of the cross-

sections/ method,"yet it was not until the 1920's that the terms

longitudinal (Blatz & Bldtt, 1927) and cross-sectional (Gesell, 1925)

were used to designate the different methodd, and it was Anderson ,

(1931), in his classic contribution to developmental methodology,

who affirmed their use as technical ..terms.
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Considering the importance and use.of longitudinal and cross -
sectional methodlology in educational and developmental research, it
is unfortunate, and surprising that comprehensive and satisfactory
'discussions of the problem are unavailable in the educational literature.
As an example,,it is in demography where significant advances have
been made (e.g., Whelpton, 1954). The lack of consideration of these
advances in other disciplines is particularly unfortunate Since, as
one case in point, large-scale educational research relatedo student

development has borrowed conventional designs only, from developmental
_psyeholuy rather than likely more appropriate adaptations of these
designs used by the demographers.

"Experimental" and "Descriptive" Designs and Variables

Parallel types of criticisms have been directed to studies
utilizing longitudinal and cross-sectional sampling designs. the
primary, criticism relates to the difficulty in assigning causality
or the directionality of relationships in Such studies (Campbell_&
Stanley, 1963; Russell, 1957; Spiker, 1906)` and the inabilityNto- ---,-

subscribe fully to the principles of experimental design when 'arse
procedures are used. As an example, chronological age is a biotic

, variable not amenable,to random assignment, replication, etc. Yet,

-ing the principle that only properly randomized experiment's
can lead-to-useful estimates of- causal treatment effects, is a,po-

tential trap for educational rese hers. As examples, it may lead edu-.

cational researchers to reject one o the primary if not the primary)

problem in the field,-- i.e.,'the estimation,of the influences of
educational (e.g.,'classrboM) experiences on performance; it can

lead to the design of educational research blindly following the prin-
ciples of experimental design at the expense of the crucial'f9cus --
the' critica1,9alySis of educational environments, and the attendant
individual-environment interactions. It also encourages "laboratory"
inVestigations rather than studies which take place in the less-
controlled educational context. And, it encourages investigations
wheeedata'are collected at 'one time of measurement rather than

;

longer-term studies and possible sacrifice in external validity

fo. gain in internal'validity.
. .

.
,

' In addition, the costs, in terms of time and 'money are indeed
prohibitive when "experiments" are conducted"(Rubin, 1972). This

is true since4t is impossible to perform equivalent experiments td
test all treatments on even a single educational question (e.g.,

I

, examining 100 reading programs). And, the above argument has not

included the argument that the exclusive dse of experimental variables

precludes the study of, certain educational questions or that rnadom
assignment cannot be ethically used as a procedure in certain types of

,,,
studies: .

Several of the questions and issues discussed above relate to
questions of research design and methodology and are addressed in Chap-

ters( 2 and 3.
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Specific Methodological Problems in Longitudiqal Research
ev,

Longitudinilitnies confrOnt numerous difficulties, only a

fraction of, which were addressed 14thin the confines of this project.

A variety of issues involved in the Measurement of change are considered

in Chapter '4. Of particular concern in Chapter 4 are difficulties

caused by characteristic§ of scales commonly used for standardized

achieiienent tests.

Studies, whether longitudinal or cross-sectional, which focus on

" student achievement Over a period of several years typically require '

different measures of achievement at different grades4or ages. In

order to make comparisons of achievement-over time such tests must

be put on a common scale, i.e. they'must be vertically equated. , In

Chapter 5 the adequacy of the vertical equating,of some existing

standardized achievement tests is investigated and a study exploring

ehe potentialutility,of the Rasch model eor.the vertical equating

problem is reported.

Several attempts at using analytical techniquesdeveloped by Jores-

kog fpwthe analysis of covariance structures are discussed in Chap-

ters 6 and 7. In Chapter 6 the"focus is on the fitt of several sets of

data toa, Simplex model and in Chapter 7 the focus is'on the useopf ,:,

these techniques .,to evaluate the constancy of constructs, over time.

Time-Series Analysis in Ldngitudinad, Research

Fr its very name, time-series analysis seems to be, a technique,

especia suited.to longitudinal research. A casual study of its

methodology reveals, however, that -'-as traditionally conducted:--it

is applicable more to sequential cross sectionarresearch. In

Chaps= 8 we first present at elementary exposition of time-svies

analysi then indicate the difficulties in applying it to' data from

'longitudin studies as ordtnarily conceived, and finally proppse a

new
ml,,44,1.4,6.kt Afo

estimation parameters in time-series'models that is

especia 1 to longitudinal data.

In brief,

parameterestima
a large number (>

the correlatedness
avoids these difficu
of two numerical exam
simulated data.

Measurement sol Change

C

-&4.Nties,344hthe traditional procedures for

'de-series analysis are that (a) they require

oint observations, and (b) they ignore

to across time. A procedure which
and zuccessfuLly tested by means

on real data and the othef using

The time-honored problem of deasurement of time, change is

revisited in Chapter 9. Difficulties with the traditional assumption

of "universally unCorrelated errors" are discussed in this context,
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And a relaxed ass u tion of, "homogeneity of error covariances" is

proposed. Under e latter assumption, lower and upper bounds for es-,

timated time change are derived, utilizing the mathematics of operator

,analysis.

An example band on real data is,presented,.and it is shown that

the unuirreldted-errors4assumption leads to an absurd result (a

multiple-R grtater than unity), while the 'relaxed condition yields

reasonable and useful bounds.
P.

9
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CHAPTER 2

y THE STUDY OF .BEHAVIOR 'CHANGE OVER TIME

OVERVIEW-

The study'of time-related behavior change comes in varied forms.
To the developmental,psychologist, such a research focus most typically
implies the study,of.behavioral development. For the sociologist, such

a purpose more likely wiuld imply the, study of social or sociocultural

change. The educational researcher is concerned with each of these in

a very direct way. We are concerned with how the population of school
children changes across time, e.g., years or decade, and with the per-,
formance changes, of specific groups of children as they pass through

successive school grades. The first two purposes notwithStanding,

the educational re archer is often confronted with a third and more

specific question .i.e., the,assessment of the influences of schooling

or educational intervention. The differences, similarities and-inter-,

relationships among these various research 4uestions are discussed

in detail in various sections of Chapters 2 awl 3. It is our intention

to examine various research designs and theoretical models which fit

such estions. Several theoretical assumptions which underly these

ques i s are also examined most specifically as they apply to longi-

'tudina methodology. -These questions and designs are discussed in
("his chapter in the context of conventional wocedures and sampling

methods. Modifications and extensions of such designs proposed by
Bell, (1953), Schaie (1965) and Baltes (1968) are presented and dis-

cussed. In Chapter 3, general sampling procedures are presented
which can be adapted to the theoretical model.and assumptions adopted

, .

by tho researcher.
,

Many of the inferences of this paper rest on the assumption that

educational researc1144like developmental research, can be described

by problems which take the form:

B = f(T)

where "B" refers to'the behavior or behavior changes to the studied,

and "T".refers to the time period over which the assessments are made

(Baltes and Goulet, 1971). As will be shown, most designs used in
educational research can be described by the above paradigm even though

they represent only the simplest cast of a more general model for

research concerned with chariges in behavior associated with time.

These research designs are discussed and their limitations in the

context of educational research are noted in the next section.

33
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SIMPLE DESIGNS FOR EDUCATIONAL RESEARCH

Schaie (1965) has noted that the paradigm = f(T) described
above spawns three alternate research designs, generally known, as

'

the cross-Sectional method, the longitudinal method, and the time-

, lag method. These three designs differ in terms of the procedures
used to draw the samples of interest and the time period over which ,

measurements are taken. With the cross-sectional design, for 4.1

example, samples of different ages are teted at,the same, point in

time. As will be shown, such a design hai limited usefulness in edu-
cational research. The longitudinal method requires the testing of
samples with the same birthdate (or alternately samples who are in
the same school grade) at different points in time. Such a design-

is perhaps the most popular of the three in' the context of educational
research since the .children can be followed over periods of time when

they are enrolled in school.

It is important at this point to mention, that the longitudinal
design is amenable to both between-S and within-S (i.e., repeated
measurement) testing procedures. KS' mentioned above, the basic

requirements of the longitudinal design are met if Ss with the same
birthdate are tested at two or more points in time. This may be

accomplished through the repeated testing of the same sample of Ss; '

i.e., a within-S longitudinaf design. With a between-S longitudinal
desig% sample's of Ss can be randomly drawn froma population born

0
within the same period, with each sample being assigned to testing
at one of the times of measurement represented in the investigation.

, I

Thetime-lag design, the least used in educational research,
yet perhaps the most powerful of the three designs for educational

purposes, requires the testing of samples with different birthdates

at the same chronological age. This, of course, requires testing the

samples in the order in which they are born:

These three designs are represented in Figure 1, with the cross-
sectional (XS) design conforming to the vertical (cross-row) compari-

sons, the longitudinal (Lo) design conforming to the horizontal
(cross- column) comparisons, 'and ,the time-lag (T1) design conforming

to the diagonal comparisons. As Figure I also illustrates, a par- _

ticular sample of Ss is fully describedby three components, date of

birth (cohort), age, (A) and time of testing (Schaie, 1965). Note,

however, that the sampling model described in Figure 1 makes no ref-

erence to the level of educational attainment (e.g., school-grade)

of the respective samples of subjects defined by the model. It is

apparent that any prototypic design for educational research must

provide for the estimation. of such a parameter and this is discussed

in later sections of the chapter. However, at this point it is most

releVant to contrast the three alternate designs as they incorporate -

this parameter into one of the three already described.

--
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Educational Attainment and the Cross-Sectional Design

Studies concerned with educational phenomena and utilizing'the
cross-sectional sampling procedures implicitly or explicitly incorporate
educational experiences as part of the age component. Examples ,are

studies where the samples of Ss tested differ in CA by a minimum of
one year or a minimum of one school grade. As is apparent, such 'a pro-

cedure yields results which confound amount of schooling and other com-
ponents of CA-related behavior change and, thus, the effects of educa-
tional experiences can be estimated only in conjunction with,these
other factors. 'urthermore, the cross-sectional method require-s the
added assumption that the effects ,of schooling for children in com-
parable grades are the same irrespective of. Ehe'year in which the
children are enrolled. Thus assumption is similar to that made in,

developmental research; i.e., that measures of performance utilizing
cross-sectional sampling procedures will, provide results identical to
those involving longitudinal sampling procedures (Wohlwill, 1970).

Similarly,within-srade cross-sectional contrasts (where between-
CA contrasts are made for Ss in the same grade) have little use in
educational research since this design does not provide for variation
in the educational experiences of the samples.

Educational Attainment and the Longitudinal Design

The longitudinal design sUff-et-s-from the same limitations as the
cross- sectional method, except thal the limit4tion holds when both .

Within- and between-grade contrasts are made. Again, amount of school

experience and other CA-related influences on behavioral development
are. inextricably correlated. In facts the ,case has ,been made (Goulet,

Williams, & Hay, 1974) that,,because_of the confounding of CA-related

and school-related influences on development, the longitudinal method
will normally provide 'estimates of behavior change which'exceed those

,
ism:al./mg the cross-sectional method when within-grade contrasts are

made.

Educational Attainment and the Time-Lag,Method

In contrast, to the cross- sectional and longitudinal methods, the

, use of the time-lag methods, perhaps more Properly, identifies school
expeeience with the time-of-testing component in Figure 1. The use

of this ,design in educational research, although somewhat limited by

the age-graded nature of the schools, nevertheless permits both With-

grade and between-grade contrasts to be made for samples of varying

CAs. The deSign capitalizes on two simple facts; i.e., that children

Within a grade differ in CA, and that the CA of a sample of Ss increases

over the period of a school year. Thus, in reference to Figure. 1, if

testing takes place in October and April within\ the same academic

year, it is possible to contrast matched CA sampleS within a grade"

(e.g., at age A2) or between matched-CA samples in adjacent school
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grades (e.g.,'at age A3). Such contrasts permit the estimation of

the effects of school experiences independently of other CA-related

factors. Ae. major limitation of using the time-lag method is that
the contrasts may only be made for Ss in adjacent grades or for within-

grade contrasts. Nevertheless, many such contrasts can be made.

It is apparent, that the use of a cross7sectional sampling strategy

is inappropriate when,the purpose of the researcher is in assessing

education-related .performance changes associated with time. The dif-

ficulty is furthers compounded when it is taken into consideration that

cross-sectional differences in performance are as likely attributable ,

to population (i.e., cohort) differences as to age differences, Bell

(1953) and Kessen (1960) have each noted this possibility and have
advocated the use of longitudinal sampling whenever population differ-

ences/changes are a possibility. However; longitudinal sampling, where

Ss are repeatedly,tested, suffer from potential contamination due

to repeated observation, attrition,etc. longitudinal measurement

also takes time" since the researcher mUs wait between successive test-

ing periods. In addition, it is eviden ih Figure 1 that-longitudinal

changes in peformance may be attributable to factors associated with

age, time-of-testing, or both.

Bell's Convergence Method

Such difficulties in interpretation of the B = f(T) functions have

led to several suggested modifications of the above/Sampling procedures.

The first of these was presented by Beal (1953) and called the Con-

vergence Meth-Od. A prototype of the Convergence Method is presented

in Figure 2. .

Figure 2 describes four samples of children (cohorts 1962, 1964,

1966, 1968) each tested in three consecutive years.-(1974, 1975, 19.76)

and involves combining the longitudinal and cross- sectional sampling

methods in such a way that "developmental changes for a long period

may be estimated in a much shorter period (Bell-, 1953, p. 147)." In

other words, the age function from '6 -14 in Figure2 can be described

"by using three testing points (spanning.a wo4year period) for each

of the four cohorts. The overlap int:CA for the successive cohorts

(e.g., cohorts 1968 and 1964 are4each tested at the age of eight) is

built into the design in such a fashion as to permit the possibility,

of assessing population differences. In other words, in the absence of

performance differences across different cohorts matched on CA,

Bell (1953) suggested that the longitudinal function estimated using

the convergence method would overlap with the longitudinal functidri

which would have been obtained if the 1962 cohort would have been

. tested at the age of six and yearly thereafter.

Bell's (1953) Convergence Method was suggested as an alternate

sampling prOcedure (replacing longitudinal or cross=sectionaI methods)

to reduce some of the difficulties\associated with longitudinal,samp- :"

ling. Implicit in suggesting the method was the suggetion'that
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longitudinal sampling was clearly the method of choice when the

purpose of the researcher, is to describe developmental-age functiong

for a specific cohort or p6pulation of subjects.

Furthermore, Bell clearly anticipated, recent refinements in longi-

tudinal methodology by suggesting that combinations of longitudinal

and cross-sectional sampling have merits which clearly exceed those

using either sampling method alone. And, his suggestions have been

tacitly accepted by Schaie (1965), BalteS (1968),Buss (1973),00ulet,

Hay, & Barclay (1974), in recent papers which have had the primary

purpose of identifying the components of time-related behavior change.

SEQUENTIAL METHODOLOGY

Schaie (1965) has criticized the available sampling methods and has

suggested that longitudinal and cross-zsectional methods are only special

cases of a general model for research.on behavior change aver time.

He argued that'peTformance is a function of three factors, the age (CA)

of the organism,-the cohort (C), to°which the organism belongs, and

the time (T)it whith meaSurement occurs, i.e., R = f (A,C,T). A

cohort, according to Schaie (1965) refers to the population of organisms

born at the sane point ar interval in.time. In short, Schaie (1965),

suggested that differences associated with age which are obtained using

longitudinal and 'cross-sectional sampling procedures would accurately

reflect behavioral aevelopment(and'prOvide identical estimates of' age -

related behavior change) only if thereVere no population'- (i.e., gen-

eration) or environmental (culture) changes over time, In 'the absence

of evidence to the contrary, cross-sectional differences in performance

must be assumed to reflect the combined influences of developmental

(i.e., age) ,and population (i.e., cohort) changes associated with time.

Similarly, longitudinal diffeiences in performance reflect influences

of age- and time-of-measurement-related factors.

In view of the potential confounding, Schaie proposed a model for

the conduct of developmental research which prOvides'the opportunity to

examine the influences of each of these components on 'performance. The

general model generated three different sequential research designs

which Permit CA, cohort, and time of measurement to be simultaneously

Varied, two at a time. The general model is summarized in Figure 3.

As Figure 3 indicates, samples of Ss representing five levels of

age and nine cohorts are tested at five times of measurement. Between-

row _Contrasts represent Conventional cross-sectional (x-s) comparisons.

Diagonal contrasts, conform to a time-lag (T1) design, and those between

colvn.comparisons represent longitUdinal (Lo) contrasts. As is

apparent, cross - sectional comparisons confound age and cohort dif-

ferences, longitgdinal comparisons confound age and time of measure-

ment differences, and time-lag comparisons confound cohort and time-of-

measurement differehces. In view of such confounding, S4:FT1k1965)

suggested the use of sequential sampling designs which separate sources

of variance associated with the three components. ThUs, a cohort-
,

m of
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1968 6a 7 8

1966 ,8 9 10

1964 16, 11 . 12

1962 , 12 13 S4 14

a. Cell entries refer to CA at the time-of-testing

Figure 2

Bell's Convergence Method
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Age

1962 9a xs

1/

1963 8
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A Prototype

l'igure 3

of Schaie's General Developmental Model
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sequential design, represented by samples b, c,.e, and f in Figure 3
provides an estimate of age differences controlled for cohort dif-
ferences and for cohort differences controlled for age. 'Similarly,
a time sequential design represented by samples a, b, c,' and e in
Figure 3 provide for estimate of age differences with t e of measure-

-, went controlled, and for time of measurement difference with age
controlled. The cross-sequential, design, represented by samples b,
c, d and e in Figure 3, provide for estimates of cohortchanges uncon-
founded by time and for time differences unconfounded bly cohort dif-
ferences. Schaie (1965) suggests further that a sampling plan con-
forming to the example provided in Figure 3 provides the opportunity to
assess the independent effects of each of the three components with
a minimum.of six samples of Ss, e.g., samples a, b...g in Figure 3.

The primary ability of Schaie's model is that itiprovides methods
for separating sources of developmental change. That/ is, unlike the

cross-sectional method, the use of the cohort-sequential design pro-
vides the opportunity to examine age differences in the absence of
confounding with the cohort variable. Similarly, the time-sequential
design-provides the possibility of identifying age-related effects
without the confounding of time-of-measurementk(as with the longi-
tudinal method);

Nevertheless, the model as discussed to this point remains exclus-
ively descriptive and hb,theoretical meaning can be ascribed to either
age, cohort, or time-of-testing effects obtained when using the model.
Schaie (1965) has, in,Lact, suggested that the three components are
subject to theoretical interpretation that'is, age differences esti-
mated from the model may, according to Schaie be interpreted as the
"net effedt of maturational change," time differences as "net changes
within the and cohort effects as "net changes between
generations" (1965, p. 9 Schaie suggests further that these effects

may be estimated simultaneously, wheneve data are available which con-

form to the general model; e.g., the x samples (a - g) in Figure.3.

The theoretical interpr -tions of age, time, and cohort effects

proposed by Schaie have - ed considerable controversy (e.g., Baltes,

1968; Buss, 1973; Wo ill, 1973). Baltes (1968),for example, has

suggested tthat t three components, age (A), Time (T) and Cohort (C)

do not ,exist ependently of one another; i.e., that Schaie's model

can be de ibed adequately by two rather than three components. In

other words, once two of the components are specified, the third is

unequivocally fixed. This fact can be demonstrated by recourse to a
simple example; i.e., that the cohort for any particular sample of
Ss may be determined by subtraction of age (years) from the time of

measurement; i.e.,

C = T - A 2.1

Similarly it can be shown that the following two relationships exist:

2 I
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T = A + C

A = T - C

2-10

2.2

2.3

Baltes (1968) suggested that the existence of the mutual dependen
cies reduce the model to a bifactor rather than a trifactor model and
that one of the components in Schaie's (1965) formula, R = f (A, C, T),

can be replaced by substitution. As an.example, the substitution of
A + C in formula 2.2 Schaie's formula becomes R = f (A, C, A + C).
Further difficulties relating to the theoretical interpretation of
B =-f (T) phenomena are discussed later in this chapter.

it is, however, important to consider the implications of Baltes'
suggestions as they relate to research methodology and the adeqyacy of
available sampling methods. First, in the absence of the possibility
of fuhctionally separating age from time-of-measurement 'effects, or

coho from time-of-measurement'effects,the longitudinal and time-
lag .11ipling methods immediately become (contrary to Schaie's sug-
gestiops) acceptable research designs for the study of B = f (T)

phenomena. These two designs are only limited in their generaliza-
bility; i.e., longitudinal data collected Qn a single cohort provide
!'true" estimates of age-related development for the cohort and. time
intervalbeing studied.P Similarly, performance differences estimated
using the time-lag method provide true estimates of cohort-related
change for the ages and time interval being studied. Oky the cross-
sectional Sampling method is unacceptable since it confounds agea.nd
cohort-effects.

The pr9 blem 'of generalizabflity is also reduced, according. to

Baltes (196 ), if the longitudinal method is supplemented by: (1)

obtaining 1 ngitudimal measurements for more than one cohort;
by using the cohort-sequential design (pr what Baltes calls longitudi-
nal sequences); or (2) obtaining cross.2sectional measurements across

,several times; i.e., using Schaie!s time-sequential design (or what

Baltes calls'longitudinal sequences). Most important, both Schaie and

Baltes rec.o end the use of sequential designs for the study of B = f (T)

phenomena an their use is most strongly recommended here-wh never the
intent of the researcher is to obtain acceptable (and gener izable)

estimates of age or generation effects. It is apparent, hp ever, that

the estimates of B = f (T) phenomena using sequential Metho s remain
descriptive add subject to differing theoretical interpret tions. The

Baltes (1968),land Schaie (1965) controversy, is a case in p int.

SEQUNTIALADESIGNS AND EDUCATIONAL Re.M0EARCH

The above discussion has highlighted the difficulties in using con-
.

vential sampling methods in research oriented to the ss essment of the

influences of educational experiences. This discussion leads to three

questions concerned with these problems.

2 2
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'1. Do children of the varying CA's enter a school grade with
varying proficiency?

2. What are the non-CA-related influences of schooling?

3. . What is the nature of the interaction between amount of
schooling and CA in performance?

Unfortunately, none of the above designs previously discussed

provide information concerning these questions. Nevertheless, it is

possible to sdt tp a sampling procedure which wheneused, permits these

questions to,be addressed directly. Figure 4 privideS a prot6type of

; such a
.

sampling plan. In the figure, samples of $s Varying in CA

(A1, A
2 8

);:amount of schooling (S1, S
2'
S

7
), and school grades

are tested at different points in time durihg the period of a school

year and permits cross-sectional contrasts (between-row comparisons)

longitudinal contfasts (diagonal comparisons) and time-lag contrasts
trz

(between-column comparisons).
. 4"

The cross - sectional contrasts (relevant to question 1 above) pro -i
vide comparisons of performance for samples of children varying in CA
but who have had the same amount of formal schooling.' For the time-
lag contrasts (relevant to question 2 above), the comparisons ore
for samples matched on CA who vary 'in amount of schooling. The longi-

tudinal contrasts (where samples of Ss born during the same period
are tested at different points in fhe school year) inextricably con-
found CA and amount of schooling. Fortunately, the cross- linking of

appropriate samples (as exemplified in Figurp 4) permits comparisons
,which provide information to be collected rdtarding each of the above
three questions in the same analysis. For example, statistical con-
trasts,involving samples a, b, c, and d in Figure 4 permit the
behavior changes related to the first four months of schooling, CA,

and their interactiom_ta be estimated for children in first'grade.
An,anaysis-involving samples d, e, f, and gfrom Figure 4 permits

Atimilar comparisons for the last four months of the school year.
Finally, an analysis Involving samples g, h, i, and j from Figure 1
permits educational growth during the latter part of first grade
and the early, part of second grade to be estimated. Each of the

statistic&l analyses outlined above represent simple 2 x 2 factorial
,designs with CA and'time of testing as the two factors. Furthprmore,

each analysis permits two independent assessments of the influences\
of schooling (one at each of two levels of CA) and two estimates of

the relation between CA and performance (one at each of two times of

testing in the school year). Additional discussion of the statistical

analyses which follow from the use of the sampling plan in Figure 4 is

presented later in this paper. However, it is important' at this point
o .
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to note that the samples of Ss represented in the present model are
independent groups. Thus all comparisons conforming to cross-
sectional, time-lag or longitudinal designs are based on between-S,
(as opposed to within-S) comparisons. Such contrasts may be made
across the entire period of formal schooling and,_ interestingly, data,

conforming to the sampling plan in Figure 4 and spanning several school
grades may be collected over the period of a single school year (e.g.,
1975) or multiple school years, e.g., 1975, 1976....

Descriptive 'Uses of the Sampling Procedure in Figure 4

The sampling procedure outlined in Figure 4 was developed on the
premise that research designs and educational research methods must
serve both analytic and descriptive purposes. In an analytic sense,
the use of the above sampling procedUre for either within- or betwedn-
grade contrasts permits the independent influences of schooling and
other CA-related factors to be estimated. However, the above sampling
procedure has an added utility, that of permitting amount of schooling-
performance functions to be generated in much the same manner that CA-
performance functions are generated in research'concerned with
developmental phenomena.

That is, the use of the sampling procedure outlined in Figure 4

permits the cumulative influences of schooling to be estimated across

grades. Such a schooling-performance function would be represented

by adding the differences in performance for matched CA samples over

different times of the school year for Ss in different grades; i.e.,

the estimate of the influences of schooling for the first educational
__s

period would be represented by: XI - X
a

+ (Xd -.R ) or'by

2

Xb + Xd - (Xa + Xc) The estimate of the educationtl'experiences for

2

the second period Of schooling would be repiesented by T<
e
4 (X

d
+

2

140 The cumulative inf'l'uences of schooling across educational periods and

grades would be represented by pooling the estimates across these

periods. This sampling procedure also permits CA-performance functions

to be estimated independently of the Imfluences of schooling. This

would be. accomplished by pooling performances differences for samples

varying in CA who have equivalent educational experiences; e:g.,

+ (Xd - id or Xc - (Xa +

2 2

1
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Within- and Between-Grade Contrasts in Educational Research

It is emphasized that all educational problems and issues do not
require a sampling plan as elaborate as that specified in Figure 4.
In fact, most research problems probably require.that only a sectfon,of
the total sampling plan be 'used. Such a determination most bQ m*de
by the individual researcher after taking into consideration the
nature of the research problem, past empirical findings and PIE theo-
retical model or hypotheses to be investigated. However, it is of
interest to note some of the additional phenomena which maybe studied
when within-grade contrasts and /or between grade contrasts are made in
conjunction with the above sampling plan. For example, within-grade

contrasts would be especially appropriate when the researcher is
interested in crosSfseasonal behavior changes in the children. For

example, the amount of time spent in study may vary with the season
of the year or the prximity to important holidAys (e.g., Christmas).
Similarity, between-:gr4 contrasts for patched-CA samples at the end
of one grade and the beginning of another may-provide information
concerning the (non-CA relaxed) impact of changing school grades on
children's behavior.

CA, ALTERNATE DEVELOPMENTAL SCALES
AND RESEARCH METHODOLOGY "V."'

There has recently been considerabld controversy and discussion
concerning the role and use of CA, in studies concerned with describing
the nature and course of behavioral development (Baltes, 1968; Baltes
& Goulet, 1971; Bijou, 1968; Birren, 1959, 1963; Goulet, 1970, 1973;
Kessen, 1960; Neugarten, 1968, 1973; Neugarten & Datan, 1973; Schaie,
1965; Wohlwill, 1970, 1973)'. However, Most of these papers have been
concerned with the limitaticIAWQ4 rather than considering the role(s)
tbat it .does play in developleftta*Itnquiry. Furthermore, the general
concerns regarding the limitations Of CA as a variable in developmental
research are shared, :but the reasons for "this concern vary widely. The :
present sections represents an attempt to classify, the various uses and

limitations of CA from different theoretical perspectives, especially
as they relate to attempts to identify developmental (as opposed to

generation-related or secular change-related) changes,in behavior.

Age Scales and Development

Kessen's (1960),, statement defining, the subject matter of developmental

psychology provides an excellent base from which to describe the various

uses of CA in developmental research. He proposed: "A characteristic
is said to be developmental if it can be 'related to age in an orderly or
lawful way," (p. 36). 'Apart from occasional and peiiodic 'reminders that

age does not, qualify as an experimental variable (e.g., Baltes, 1968),

the functional statement R (response) = f (Age) has been generally

accepted [even/with its limitations (Birren, 1959; Wohlwill, 1973)], by

most developmentalists as defining the subject tatter of the field.
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While not rejecting the importance'of CA as an index of behavior'al
change, Neugarten and Datan (1973) suggest, It is a truism that
Chronological age is at best only a rough indicator of an,indiwidu-
al's position on any one of numerous physical or psychological dimen-
sions. Tke significance of a given chronological ag when viewed
from a sociological or anthropological perspective, 's a direct fun-'
tion of the socialodefinition of age." Similarly, Baer (1970) sug-
gests that CA is used realer grossly'as.a. cataloging device in order
to manage the apparently unmanageable diversity and heterogeneity
which exists among chitEren. His comments highlight a number of
important elements regarding the use of CA in developmental research-
ers. We suggest that,the conventional methods of subject selection
and Matching .in developmental research rarely consider the'"point
of origin" as a nominal property. Rather, the major concern is to
describe and' explain the behavior'changes or differences which occur
across time for selected populations. For example, researchers using
Ss enrolled in school typically select and differentiate samples by
=school grade rather than chronological age. The CA range of the
children within a specific School grade, however, typically meets
or exceeds 12 months. Thus, even though the average difference in
CA for Ss selected from successive grades will approximate 12 months
(as the metric of time) the use of birth as a functional defining
characteristic has been Sacrificed.

Similar conventions, exist in the literature concerning adult
development and aging where the'performance of Ss falling within

. specific CA ranges, e.g., 26-35, 36-45, 46-55, etc.,4are compared.
Again, such a convention maintains ehual time (or age) intervals
between successive groups but scarifices the point of origin as one
of the formal characteristics-of a CA-based scale.of development.
In other words, the concern of the researcher has been to describe
the developmental changes which occur across the time or age range
included in the study using the developmentally "youngest" sample
fOr comparison. One possible reason for this is ,that developmental
and educational research does not, as yet,', require a high degree of
precision in matching variables (e.g., Baer, 1970). However, a
central premise of this paper is that matching criteria are inPortant
since different uses of the point of origin serve as convenient cata-
loging devices to differentiate among various "types" of developmental
research.

Three Uses of CA in.Developm4ntal Reserch

Wohlwill (1973), Baer (470) and Others suggest that CA, as an
index along which to measure bhavior change can be used as a purely
descriptive (and thus causall)Pneutral) scale. We suggest that such
'a position is appropriate only if the point of origin (e.g., birth)

is disregarded as a functional characteyristic in deVelopmental inquiry.
In other words, if time since birth is functionally irrelevant, then
the onlyoperative characteristic is the metric of time (in this

case calendar time). However, a developmental'scale must involve

2
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both nominal characteristicse., poipor origin and metric of
time. Chronological lig is no exception. Whefir-CA is used as an index

of .development the investiwor accepts birth by fiat as a signifi-
cant life event against which to describe the course of behavioral
,development. Furthermore, birth, as a point of origin, specifies
the manner in which Ss are to be matched or differentiated as td

' level of development.

A second use of chronologidal,age by developmental researchers
has been aptly discussed by Birren (1959) and Wohlwill (1973). 1

Birren (1959) suggests that the aging prodeas takes three forma;
biological,' psychological and social aging. Biological aging desig-,

nates the position of the individual along his/her natural life span
in ordinal units. Psychological aging refers to the` achievements
and potentials of the individual. Social aging refers to an indi-
-vidual's acquired social habits and status -- a composit of the
individual's performance in social roles.. Birren acknowledges the
substantial degree of overlap between these three "types" of aging
but suggests that these are dte most likely candidates for alternate
age scales. Since these scales Currently do not exist; CA is used
as a convenient substitute for underlying biological,' psychological
or sociological processes and is assumed to correlate with each of
them. Given that CA is used as a measure reflecting some underlying
process, several assumptions have to be made: first, the "point of
origin" of the process must be correlated with birth, and; second,
a linear relation exists between the underlying process and CA at
least over the ages or period of interest.

The third form of a CA scale may'be designated as a state or
stage scale. Such a scale may take different forms, but the defining
characteristic is'that a particular period within the life-span of
an individual is charted by points (designated'by CA) of transition
from one developmental status to another. State-oriented scales
are similar to process-oriented scales discussed above in that the r

theoretical basis of such a scale may have biologicalsociological,
or psychological underpinnings. The major difference between the
two types of scales is that state- or stage - oriented developmental

, scales assume at least some degree of discontinuity of processes
between adjacent developmental periods.

Neugarten and Datan (1973) point out that, "Although anthropolo,-
gists...have pointed to discontinuities in cultural conditioning at
various points.in the life cycle, the recognition of the need for
resocialization in adulthood is relatively new." They suggest that
"new learning" across the life span occurs in respons to, or antici-
pation of, tie succession of life tasks (or social roles) which

individuals adopt. For example, familiar "transition? points on a
sociological scale are entry into school, marriage,, retirement, etc.
The criterion for selecting important transition points'is that ehe,
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social role in question be accompanied by a relatively circumscribed
set of behavioral expectations. In this iegard, there is strong
agreement among members of a society concerning the salutatory sig-,f
nificance of life events (Neugarten & Datan, 1973).

DiscoAtinuous state scales have been developed from a psycho-
logical and biological perspective. For example, the major periods
in Piaget's theory (e.g.; sensory-motor, preoperational, concrete
operations, and formal operations) constitute fundamentally discon-
tinuous stages in the individual's life span and 'describe a specific

set of behaviors. Similarly, puberty constitutes a biologically
related transition period.

The use of CA to mark transitions between stages requires that
CA and the succession of social, psychological, or physical states
be highly correlated. Neugarten and Datan (1973) have provided such
evidence from a sociological perspective by noting a high degree of
consensus regarding the.timing'(in terms df,CA) of major life events

in an individual's life span. Similarly, there is general agreement
among diverse sets of respondents' regarding the chronological age
boundaries differentiating life pericids, (e.g., English and.English,
1957; Neugarten, Moore, and Love, 1956).

Reconsideration of the Longitudinal Method and Behavioral Development

The study of developmental changes in behavior spawns a single,
basic research paradigm -- the longitudinal method. The defining
property of the method is that a single individual is tested at two
or mores points in time. It is a so 1 portant to note that the method
is theoretically neutral since its usd does not require the investi-
gator to'adopt a specific deveiopmental scale 'along which to chart
the sequence of human development. If longitudinal measurements were
collected for several individuals the resultant data permit conclusions
to be drawn regarding the interindividual similarities'in the sequence
of behavioral development. When marked similarities in the sequence
of occurrence of behaviors are observed among the individuals studied,
the regularities cannot be charted on a developmental scale since the
longitudinal method makes* no reference either to the point ofsorigin

or the metric of change. The developmental scale adopted for this
purpose should be the one which is mot highly.correlated with the
behavior studied. dance adopted the scale specifies the manner in
which the data of individual Ss are to be grouped and the nature. of
the time intervals across which the behaviors are to be described.

Therefore, alternative developmental research methods are
derivable only after the investigator adopts a theoretically

meaningNft4 scale.' For example, cross-sectional measurement
is often used as a convenient substitute

1In this paper, the subsequent use of "developmental scale" is to be
taken in the above described genetic sense and not in reference to

any specific metric.



2-18

for longitudinal measurement. The selection of the different group
of Ss for testing requires that the researcher choose a specific
developmental scale. Once the scale is chosen, the criterion for
subject selection and matching become apparent. Additionally, it
is now possible to specify the alternate longitudinal and cross-
sectional design specified by the scale.

In short, the, longitudinal method is a theoretically neutral
and generalized research,method in developmental inquiry. Further-
more, when used in its generalized-form, it provides data concerning
the sequence but not the temporal course of behavioral development.
Special cases of the longitudinal method (along with-their cross-
sectional counterparts) are derivable only when the researcher adopts
a developmental scale,, For example, if CA is selected as the scalar
metric, Ss are matched or differentiated according to CA an&can
therefore be selected and tested according to either longitudinal
or cross-sectional sampling procedures.

Each developmental scale spawns its own unique longitudinal
method. A process-oriented developmental scale, for example, may
involve selecting and matching Ss according to a biological, socio-
logical, pr psychological process (e.g., skeletal age, Shuttleworth,
1937) and testing the Ss at selected points in time (defined by either
calendar units or process - related criteria) therelafter. Similarly,

stage- or state-scales of behavioral development would specify
matching criteria defined by the stages or states in question.
Neugarten and Datan (1973), for example, have described an alternate
longitudinal paradigm in which the point of origin differs from a
CA-based scale but Which retains the same metric of time. In this

regard, thfunctional point of origin of a particular behavioral
sequence may be the acceptance of a particular social role (e.g.,
fatherhood) and the patterns of behavior change following this event
can be'charted on a scale of calendar time, e.g., fatherhood, father-
hood +'one unit, fatherhood + two units, etc.

The striking parallels between CA-based and process-oriented
scales are readily apparent. In both cases, behavior change is charted
in terms of proximity (measured in units of calendar time) to an
important life event. In additiion, birth (or a descriptive CA-based
scale) and fatherhood (on a process-oriented sociological scale)
provide the only "benchmark" or point of origin. This suggests an
underlying continuity of behavior change across time marked from the
Point of origin of the behavior being studied. The scales differ,

however, since Ss are matched (and differentiated) according to
criteria defined by the different "functional" points of origin for
the two scales-.

Parallels to the longitudinal paradigm proposed by Neugarten
and Datan (1973) also exist utilizing theories fpcused on biological/
psychological processes. As an example, the classic study by

3U
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Shuttlesworth (1517) provided data concerning the correlation between
pUberty and the "growth spurt" in adolescence. This was accomplished
by matching Ss for the onset of puberty (rather than CA) and charting
physical growth from this point forward. Within a psychological
framework, Piaget (e,g., 1928) also accepts this method by suggesting
that the sequenCe of behavior change follows a universal order start-
ing with the onset of psychological periods and stages. Interest-

ingly, Bijou and Baer (1961, 1965) follow a very similar line of
reasoning to that of Neugarten and Datan (1973) by suggesting that
environmental "setting events" influence behavior throughout life.

The preceding discussion has highlighted several important
points related to subject selection and matching in developmental

research. First and fdremost, the adoption and use of a specific
'developmental scale requires the researcher to'adopt certain assump-
tions relating to point of origin and the metric of time. However,

as has been suggested, the nominal properties of the point of origin

are rarely considered in developmental research. Rather, the concern

in most research is with the study of ,a developmental process and how

it changes with time. Subjects are cesen,and tested, on the basis

of representing the ages or time periods over which th process is

thought'to change. In such cases, the functional point of origin
for the developmental study in question is the developmentally

"youngest" sample. In such cases the nominal and functional point
of origin for the researcher may be different, e.g., birth vs. six-
year-olds; yet the nominal and functional metric of time may be
identical (e.g., units of calendar time such as'months, years, etc.).

It is important at this point to discuss additional limitations
of the sampling model proposed by Schaie (1965). First, Schaie

limited his model to situations where the researcher has adopted a
CA-based scale of behavioral development. This is an unnecessary

restriction of the model. In addition, two additional limitations

of the model are at issue here.

The first limitation discussed earlier, has received considerable
attention by others (e.g., Baltes, 1968; Baltes & Nesselroade, 1974;
Buss, 1973, Schaie, 1965; Wohlwill, 1973) concerns the functional
independence of the components of age, cohort, and time. Tor ex-
ample, Baltes' (1968) suggestion that the three components are not
mtually independent, i.e., once two components have been defined, the

third is fixed, is relevant here. As Buss (1973) and Wohlwill (1973)
have argued, such criticisms relate to methodological rather than

theoretical concerns. Even though any two of the components cannot
be functionally varied independently of the third, the concepts of
developmental (age) generational (cohort), and secular (time-related)
change to indeed qualify as separate theoretical concepts (e.g., Buss,

in press; Troll, 1973).

At-
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"It is important to highlight two additional aspects of the issue
concerning the independence of the three components. The first
aspect concerns the manner in which the three components are defined
and the *ay in which populatibns are matched. First, Schaie's model,
by adopting CA as a developmental scale not only restricts the
researcher to indexing behavioral development from birth as a point
of origin, but also confines the definition of cohort to data of
birth rather than some alternate definition, such as, the popula-
tion of children who entered first grade in September, 1975, etc.

Any deviation from a CA-based scale requires modification of*the
general model proposed by Schaie (1965). As an example, if subject6
to be tested were in terms of a sociological state (as a level of
development) and time of testing, e.g., all subjects who were married
for the first time in September 1915, the third component, cohort,
would lose all functional meaning when defined in terms of birthdate.
Similarly, if cohort is defined in terms of "family lineage" or one
of the alternate accepted definitions of generations and generational
change (e.g., Tr011, 1973), time of measurement may be specified, but
CA loses theoretical and functional meaning. The point is if a

developmental scale other than a CA -based one is selected for use,
all three components must be re-examined bOth'methodologically and
theoretically.

The second limitation of Schaie's developmental model concerns
the restrictive manner in which the second formal characteristic
of time-related scales (the metric of change) is defined. That is,

the use of Schaie's Model restricts the investigator to a scale of
calendar time rather than one which might more properly fit the
phenomenon under study. While it would be possible, for example, to
identify samples of subjects on a scale of biological development
(e.g., skeletal age) and to the samples at selected testing points
(e.g., September 1975, and September, 1976) thesecond testing point
would have to occur after an equal time interval for all subjects
or else the functional meaning of time of measurement (as defined
by Schaie) would be lost. In addition, even though the above
research design (skeletal.age x time) conforms in some respects to
Schaie's (1965) cross-sequentill design, the main effects of time
of measurement would more properly reflect developmental change
than secular change for the two populations.

The above discussion is not meant to discount the importance
of the concepts of age, cohort, and time of measurement in the study

of behavioral development. Indeed, the present analysis reaffirms
the need to incorporate variants of Schaie's sequential analyses as
necessary paradigms in developmental research. In fact, the present
analysis suggests two additional types of variants of Schaie's
sequential paradigms, and leads to the conclusion that Schaie's model
itself is restricted in its generalizability. , These points are dis-

cussed in Chapter 3.
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CHAPTER 3

GENERAL SAMPLING STRATEGIES FOR B = f(T)RESEARCH

General Sampling Designs for B = f(T) Research

In Chapter 2, the discussion highlighted the fact that Schaie's

general developmental model represents only one of a family 'of

sampling strategies amenable to the study of behavior changes

associated with time. Other models, similar in form to the one

Schaie (1965) proposes, may be derived whe'never the researcher
adopts a developmental scale other"than CA.

The first variant of Schaie's (1965) sequential analyses paral-

lel his general developmental model with the exception that a

developmental scale other than CA is used.' Figure 1 provides an

example of the model using a developmental index based on sociologi-

cal criteria. Samplesof Ss (cohorts) who were married f6r the

first time in 1970, 1975, and 1980 are tested at the time of marriage

and in increments of five years thereafter.

The use of Schaie's developmental. model requires that,the age,

and cohort variables shard the same nominal and/or functional point

of origin. The choice of a sociological scale of development (time

since marriage) leads to a redefinition of the cohort variable (year

of marriage) in the same manner that CA as a developmental index.

presupposes a definition of cohort based on date of bir,th. Never-

theless, a sampling design such as that provided in Figure 1 permits

cohort-sequential, time-sequential, and cross-sequential analyses to

be performed if a minimum of six samples of Ss conforming to the sam-

pling design in Figure 1 are represented.

Figure 1 provides an example of an alternate model based on

sociological criteria and parallel models maybe derived using

psychological or biological ctiteria.

The paradigms basically conform to Schaie's model, and share

some of the same attributes and limitations. The attributes have been

fully documented by Schaie (1965), Baltes (1968) and in the present

paper. The major limitation of Schaie's (1965) model is that the

three components of developmental change (age, Cohort,' and time-of-

testing) cannot be defined independently of one another and this,

limitation is shared by the variant of the general model,presented

in Figure 1. As was mentioned in Chapter .2, such difficulties arise

when the scales used to define the age and cohort variable share the

same nominal and/or functional point of origin.
I '

However, it is prossible=to generate sequential paradigms analo-

gous to time-, cohort-? or cross-sequential sampling strategies which
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f
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,do not share this limitation. Figure 2 provides one example of a

variant of a cohort-sequential design. Cohort is defined by family

lineage and developmental level . by the sociological state of

marriage.

The second varianteof Schaie's sequential analyses is derivable

if the assumption is made that age (maturation), cohort (generation)

and time (secular change) are defined independently of one another.

3-3

The research paradigms parallel the sequential designs proposed

by Schaie in that generational, secular, and age changes are the

focus of the investigation. The paradigms also adopt calendar time

as the metric. However, since the components of age, cohort, and

time-of-measurement .are by definition uncorrelated, the paradigms

differ from those proposed by Schaie (1965).

CA and Other Age Scales of Development

The previous discussion has highlighted the similarities between

CA- and alternate developmental scales. It was shown that each

scale generates its own prototype of longitudinal and cross-sectional

sampling strategies and its own variant of the sequential strategies,

proposed by Schaie (1965).

The final type of design to be proposed here examines the rela-

tionships between CA-, sociological-, biological-, and/or psychological-

scale(s) of development.

Such investigations could take the form specified in Figure 3a; .

where Ss representing different levels of CA are tested at the point

of marriage and five years thereafter,. The differencgs between the

row means represent effects attributable to CA, whereas differences

between the column means reflect' effects which covary with time since

marriage. Both "independent" variables are developmental in nature

and the results from such an investigation permit inferences to be

made regarding the degree to which performance varies with CA,- time,

since marriage, or both. And, as such, the design provides Informa-

tion regarding the sensitivity of two alternate age-scales to the

phenomenon of interest. 'Nevertheless, the design, even though

calendar time of measurement is controlled as with\any cross-sectional

sampling procedure does not permit the cohort influences to be

separated from those related to develOpment.

Figure 3b represents another variant of such a design. It conforms

in some respects to,Schaie's time-sequential design in that CA and

time of testing are factorially varied. However, in this case, both

CA and time of testing are factorially varied. However, in this case

both CA and time since marriage correlate perfectly with calendar time

(1970,,1975), i.e., Ss from both cohorts were married in 1970.
.
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The merit of designs such as those described in Figures 3a and

3b from the framework of an educational, perspective is best illus.

trated by a reconsideration of the sampling model for educational

research presented in Chapter 2 (Figure 4) and presented in another

form in Figure 4.

There is a paucity of data available utilizing the paradigm
exemplified in Figure 4. However, scrutiny of literature reveals

a get of studies (Baltes & Reinert, 1969; Schaie, 1972) conducted

for other purposes but which nevertheless provide for comparisons

in which CA and amount of exposure to school curricula are,ortho
gonally varied. "Furthermore, there are several sets of data emanat
ing-from our laboratory which were conducted for the primary purpose

of testing the utility of the sampling procedures presented in Figure 4.

These data provide for withingrade contrasts (Goulet, Williams, &

Hay, 1973, in press; Goulet, Williams, Bazinou & Hexner; 1973; Wood &

Goulet, 1973a), and betweengrade contrth (Wood & Goulet, 1973).

In view of the recent availability of sucf data, it is consideed

important to present the results in summary form and to discussthe

studies themselves in considerable detail. The studies provide inf6r

mation regarding the independent behavioral correlates of schooling

and CA for children across the range of CA from four to nine years and

from nursery school to fourth grade. Also, data are- available across

.a variety of behavioral domains including intellectual growth (Baltes

& Reinert, 1969; Goulet, Williams & HaY, 1974; Schaie, 1972).visual

perceptual performance (Wood & G E, 1973a, 1973b) for singletrial

free Tecall performance, i jective estimates of recall ability

(Goulet, Williams, ay, 1973), and the utilization of rules of

addition (Goul illiams, Bozinou & Hexner, 1973),

cries of each of the sets of data providing withingfade con

tras arelpresented in Table 1 and are identified by author and the

ava,i'l.able measure of performance. Table 2 provides the data from the

single study (Wood & Gbulet, 1973b)where betweengrade contrasts are

Rossible. In each instance except where noted, CA and time of testing

rioted, CA and time of testing in the school year are varied and

`superior performance is reflected by higher scores.- The row and

llolumn means for each of the matrices in Table 1 represent performance

'for the main effects of Time of Testing and CA, respectively. In each

case,'the data represent means' based on independent samples d the

data are amenable to analysis within a 2 x 2 factorial desiarwith CA

and Time of Testing as the two factors. In addition, with the exception

of, parts of the Baltes and Reinert (1969) data or where noted, the

main effects for CA and for Time of Testing are statistically signifi

cant. No interactions were evident in the data.

?I

In each case the data represent th performance of children who

were enrolled in the appropriate grade or their age. To eliminate

the possibility of a selection bias related to grade placement; the.
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Table 2

Summary Means for Research Permitting

Between -Grade (Matched -CA) Contrasts

Wood-Goulet (1973

Errors

Grade

K 1

(5-10) (5-11)
X

Oct. 13.8 9.5 11.7

TT

April 7.6 6.5 7.0

X 10.7 8.0

4d

ti
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the children were selected for testing from the middle 70 percent
of the age range within a class; i.e., the youngest and oldest
children,within a grade were not sampled.

9

Table 1 provides data taken from Baltes & Reinert (1969). The

data'represent raw score performance on each of four subtesle of
intelligence (including letter series, word completion, basic arithme-
tic, and letter counting) which iere collected in the months of March

and July for samples ranging in CA from 8-4 to 8-8 (third grade) . ,

years in Study I, and'9-4 to 9 -8° }(ears (fourth grade) in Study II. !

Therefore, only the directionality'ot results is discussed. As is

_apparent, the diagonal contrast (upperiileft an lower-right cell means)

. provides data representing lopgitudilai changes in performance, the
vertical (cross-row) contrast represents a time-lag comparison, and the

horizontal`(cross-solumn) contrast represents a cross-sectional compari-

son. Only the longitudinal comparison involves mean differences tdhich

confound CA and length of schooling. As may be seen from these data,
the longitudinal contrasts provide an estimate of change which exceeds

that of the cross-sectional and time-lag contrasts. Also, with the

exception of the letter-counting measure, the column and row means

suggest that amount of school experience and CA are each positively

correlated with performance. With the letter-counting measure, the
relationbetween CA and performance is positive and the relation
between amount of school experience and performance is negative. Such

opposing effects of the two variables leav,e a longitudinal function

which suggests no (or even slightly negative) changes in performance
over the four-month4nterval which separated the two testing periods.

The second sets. of data in Table 1 are taken from studies by
Schaie '(1972) and Goulet, Williams and Hay, 1974. The cell means

represent the Mental Age of first-grade (Schaie, 1972) and nursery-

school children (Goulet, Williams, & Hay, 1974). Intellectual per=

formance was found to relate posiEively to amount of schooling and to
CA for both samples ofr measureswhich iiere taken in 1933 (Sghaie,

,1972), and 1973 (Goulet, Williams, & Hay 1974) and for both boys

and girls (Schaie, 1972).

. The third set of data were taken from Goulet, Williams, Bozinog,

and Hexner (1973)., The cell means represent performance oh a paired-

associates transfer task. In the Rule condition, rapid.acquiSiW.on
was expected if the children (first-grade) used an addition rule of

"add 1" to learn the individual paired associates in the list. Nonuse

of the rule would interfere with performance. Thus, superior per-

formance is reflected by fewer errors to,criterion. In the Interfer-

ence condition, the children learned a transfer list of paired associ-

ates where no rule was possible and interference,(negative transfer)

was expected. As the data suggest; superior performance was positively

1. 1
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related. to amount of schooling in the Rule condition, whereas the
reverse was true in the Interference condition. Chronological age
was unrelated to performance in the Rule condition, and the older
children learned the transfer task faster (fewer errors) in the
Interference condition.

The data provided by Goulet, Williams, and Hay (1973) take two
forms. The first set of data refer to childrens' estimates of their
ability for immediate recall. Thg children were shown up to 10\
familiar, but unrelated, pictures and they were asked to judge how
many they could remember if they were shown once. The secort0 set

of data refers to the childrens' actual recall span; i.e., the long-
est series of pictures they could remember without error after one

.presentation. As may be seen from these data, subjective estimates
' of recall ability relate positively to CA and negatively to amount
of schooling.' For the data on recall span, null effects of"CA and
negative effects related to amount of schooling are found.

The. data taken froM Wood and Goulet (1973a) represiint raw score
performance on the Bender-Gestalt Visual Motor Test. The data
represent error scores so superior performance is represented by lower
scores. Again, amount of schooling is positively'related to better
performance, with null effects related to CA.

The last set of data (presented in Table 2) deviate substantially
from those contained in Table 1. First, the data provide for between-
grtO contrasts of matched-CA children. Second, the data provide for
loWitudinal measurement for these samplei across the period from
October to April. Thus, the main effect related to school grade repre-
sents performance differences for samples who differ by one year in
amount of schooling. The main effect-for time of measurement, as with
all longitudinal W,ntraits confounds CA and time of testing and thus
he results cannot be unequivocally attributed to factors related to
CA or schooling. Nevertheless, the between -grade effect suggests
pronounced facilitative-iaLluencAsof schooling even though the Ss
are matched on CA.

A

Data-a,t.:Ich as those presented___iles 1 and 2 provide support
for.-the utillty of-utilizing sequential sampling strategies when age
(developmental level) is varied simultaneously with two developmental
scales.

There are, a number of issues which warrant further consideration.
The first point of concern is that most mall -scale studies and cer-
tainly all available large-scale studies of student development have
relied on simple cross-sectional or longitudinal sampling procedures.
Examples here are the Survey of Equality of Educational Opportunity
(Coleman, 1971) which used a cross - sectional design and the Growth
Study conducted at the Educational Testing Service (Anderson & Maier,
1963; Hilton & Meyers, 1967) which involved a longitudinal design.
As Hilton and Patrick (1970) have noted, the results of both of these
studies confound the developmental changes of prlimary interest with

46
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generational or.secular change factors, respectively, which occurred
for the samples tested. Just as important for present purposes, the
above studies were initiated for the purpose of explicating the
influences of school experiences across grades and yet provide np
estimates of these. effects.

The data provided in Tab/es 1 and 2 uniformly provide support for
the assumption that influences of schooling exist. independently of
those which may be expected from normal aging; i.e., from the cumula-
tive, influences of past experience and/or maturation (Baltes & Goulet,
1971; Schaie, 1965), and also suggest the utility of providing inde-
pendent estimates of performance associated with nonschool-related
changes in chronological age. Such estimates become especially
important under conditions where the factors associated with CA and
school experience may have opposing effects, (e.g., Baltes & Reinert,
1969; Goulet, Williams, Bozinou, & Hexner, 1973; Goulet, Williams &
Hay, 1973). In this regard., the suggestions offered here parallel
those of Schaie (1965), Baltes (1968), Hilton and Patiick (1970)
and others who have been primarily concerned with separating sources
ofqVariance associated with generational, secular, and age change in

student development.

Nevertheless, it is not the intent here to elevate either chrono-
logical age nor amount of school exptrience to the status of an,experi-
mental/independent variable. Chronological age remains a descriptive,
biotic variable (as indeed does school experience in the context in
which it is used here)*since it cannot be experimentally manipulated,
nor replicated. That is not to say that CA is a useless variable.
It remains one, of the most useful ways in which to classify or cate-
gorize children, (Baltes & Goulet, 1971; Kessen, 1961; Wohlwill, 1970)
and by which to chart behavioral change in research of a developmental

nature. In the context of the present paper, CA-related changes in
behavior are divided into two components, those which vary with school-
ing, and those associated with nonschool-related changes associated
with CA.

A second point is that none of the problems in educational research
are vitiated by the use of school grade, rather than chronological age,

in such studies. Such distinction is obviously important in educational,
research but only to the extent that it is made meaningful through the
assessment of the behavioral changes which occur over the school year
for the grade samples tested and to the extent that other CA-related
factors are controlled.

It is also important to, mention that the sampling strategy sug-
gested in Figure 4 is similar to certain popular designs used in
educational research. One example is the time by treatment design
where two or more randomly selected groups of children matched in CA,
school grade, etc., are exposed to different school curricula.over
some instructional period and the performance of the groups is
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contrasted at the end of the instructional period. Such a design,
which involves elements of both longitudinal and experimental methods,
controls for CA between the two groups of children. Unfortunately,

the design suffers from the( fact that the children are both older and
have undergone the instructional sequence at the end of training.
Thus, the performance differences among the experimental groups re=
flects not only the independent influences of the instructional sequence
but also the interaction between CA and the instructional treatments
in influencing performances (Goulet, 1970). This inference holds even

though Campbell and Stanley (1963) refer to such a design as a "true
experimental design." It is not until CA is incorporated into the
design that the interaction of CA and instructional treatments and the
independent influences of the instructional treatment upon performance
may be separated. As is apparent, this modification of the design
has each of the elements of the sampling plan exemplified in Figure 2 --

of course, with the desirable addition of an 'experimental treatment.

The primary issue considered in this paper concerns the assessment
of the effects of educational intervention (used in the broad sense)
on perfOrmance over the period of a school year or shorter interval.

However, as has alreadybeen.mentionedythe influences of schooling
are usually not discernible from other CA-related influences on rie-re?'

formance. That is not to say that the impact of or effects of exposure
to the school curriculum can be considered to be independent'of behav-

ioral development. Rather, school learning must be considered to be

one of the components in the developmental process. It is for the

latter reason that alternate experimental designs have been developed
in developmental psychology to provide estimates of the effectsNof
educational experiences on performance unbiased by behavioral devel-

opment. One such design involves the simulation or "acceleration" of

the process through the provision of massed training or practice
(Baltes & Goulet, 1971; Goulet, 1968). Such an experimental strategy

is used very often in contemporary studies concerned with cognitive
development (e.g., Sigel & Hooper, 1968; Gellman, 1969). However,

such approaches, although appropriate for the study of developmental
phenomena, cannot be generalized directly to school situations. This

is true because: (1) It ia'not possible either to identify the range
of experiences acquired in or as a directresult.of the interaction
in school; nor is it possible to simulate them in their entirety in
controlled or laboratoiy situations; and, (2) Behavioral change induced
through massed practice over a short term must, of necessity, be

limited in scope. Also, attempts to generalize the findings to school
situations are severely limited because of the possibility of an inter-
action between time and the acquisition of the behavioral phenomena of

interest. In other words, the product of school experiences are

acquired over a long period and through a variety of media, including
the teacher, age-Mate's, and non-school situations prompted by school

curriculum. There is no reason to expect that the effects of massed

practice on specified tasks have effects which are 'isomorphic with

those which are acquired,as a result of schooling over'the school ye4r.

Finally, studies using such a design focus (implicitly or explicitly)
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on the identification of variables which influence student learning

rather than on the description of educationrelated behavior change.
While such research is needed, it does not lead to the types of
information provided when using the sampling plan suggested here.

There is a second way to provide direct estimates of the effects
of school experience which are unbiased by independent time or age

, rOlated components of behavioral change. In the most simple case,
the procedure would involve the comparison of tWo'groups of children
across time (e.g., the school year) under conditions where both groups

were eligible for acceptance into school but where one of the two

groups was enrolled in school and one wasn't. However, it is extremely

difficult to find "random" samples of children who are of school age

but who have not been enrolled in school. And, even if such a sample

were available in the general population it would be impossible to

match them with children who were enrolled. The very conditions which

precipitated the lack of enrollment would bias the sample. Campbell

and Stahley have discussed these issues in detail. As is apparent,

the sampling plan presented in Figure 2 utilizes a research strategy
which _capitalizes on'the latter method while avoiding the potential,

sources of confounding when it is used.

/ ,SCHOOL EXPERIENCES, CA, AND THE DIRECTIONALITY OF BEHAVIOR CHANGE

The intent of this paper is not to 'comment directly on either

the nature of the influences of schooling or the relation between

performance and amount of schooling. Nor is it possible to specify

a priori within the context of the sampling plan exempAfied in

Figure 2, either the magnitude or direction of the influences of

'factors related to CA and school experience on-performance. Never
.

theless, it is appropriate at this time to reiterate, some of the general
inferences which may be drawn from the data presented in Tables 1 and

2 and other sections of the paper. These inferences are provided

below and appropriate discussion follows each point.

1. Available data suggest the utility of adopting ,the sampling

plan in Fig re 4 for educational research purposes and, although

only few ava lable studies permit contrasts of the type requireck each

provides evid nce suggesting independent effects associated with CA

and amount of schooling over periods as short as four months.

....._

2. The relation between CA and performance and amount of%chooling

and performance may be complementary (either positive or negative) or

opposing over the same pod.
s.

The point of interest here is ,that the relation between CA and-per

lormance is not uniformly positive,during the years of formal edudation.

In fact there is a substantial amount'of evidence suggesting, for

11example, that the relat' between CA and performance in problemsolving

tasks irs curvilinear ove the age range from three to eighteen (e.g.,

,Goulet & Goodwin, 1970; Weir, 1964). While the series, of studies from

which sq,ch inferences were drawn have involved crosssectional sampling
,,-

5 I
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procedures, there are probably many instances of behaviors which cor-
relate positively with CA and negatively with am4nt of schooling
(or vice versa) over the same time period.

3. A basic premise here is that designs used in educational
research require sampling and testing at least at two points within
the school year for Ss in the, same grade. It is only with such a
sampling plan that the behavior changes which occur over this period
'can be assessed. Such suggestions have already been made (e.g.,
Campbell & Stanley, 3) and further reiteration regarding this
point is unnecessar . Nevertheless, within-year'as opposed to bdtween-
year times of testing should also minimize4confounding due to attri
tion in educational research (e.g., Hilton & Patrick, 1970).

4. A central assumption is that the non-sc _ol related' correlates
of behalioral development (as indexed by vari 'ions in CA) must be
controlred before the influences of educati nal intervention can be

assessed. This assumption is similar to that made by Schaie (1965) .

and Bakes (1968) in their attempts to differentiate age change from
generational and secular change in developmental research.

5. Although measures of achievement over periods of schooling
generally show at least modest gains, reviewers of such research have
been quick to mention that the achievement gains observed are as likely
attributablg to,"maturation" al tolthe influences of instructton
Uustin, Rogers; & Walbesser, 1972eFurtheRtore, such reviewers-
have ?.amented the fact that educational research directed to assessing
the influences of schooling havel)provided no data demonstrating that
the gains were maintained over time, espedially in contrast to groups
not exposed to instruction over the same period. The use of uhe

ssampling plan in Figure 4 provides for suchrestimates.

'6. The suggestions contained in the present paper also hold in
the context of the norming and standardization'or achieement tests.
That i$ most standardized tests have utilized either cross-sectional
or Longitudinal sampling procedures in Obtaining their normative sample.

Thejoiases which. result from such a sampling procedure will vary as
a result of date of_testing; type of sampling procedure used, and the

relation between amount of schooling, CA and performance on the

Standardized test. These biases h.a.re been demonstrAted by Goulet,

,Williams and Hay (1974) and readeri are referred'to'this paper for a
complete discussion,of this point'.

Some final comments concerning the influences,of schooling are

warranted. First, there is no intent'to imply that the results attrib-
uted'to the influences of school experience in the present study are
directly or, exclusively attributable to the "in- classroom" experiences

of the children. Rather, such influences may take many forms, ranging
from the effects of the different forms of social interactions,

111
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environmental contexts, and parental or peer demands which confront

the children while they,are'enrolled in school. Such potential

caveats do not vitiate the use of the,proposed sampling model since

it is appropriate for use in Conjunction with designs incorporating

experimental methods which are available for educational research

. and for designs concerned with the evaluation of the influences of

educational programs.

A Reconsideration of, the Cohort Variable

We have suggested previously that the definition of the cohort

,variable need not,be restricted to date of birth as Schaie (1965)

has assumed. Such a definition is most appropriate, perhaps for
studies concerned with the behavior and development of infants (e

Weatherford & Cohen, 1973). However, even in these instances, the,

definition can beipalled into question. As an example, Fantz, Fagan

and Miranda (1975T have suggested that date of conception, rather

than date of birth, is a more appropriate index by which to identify

the "origin" of life. Similarly, genetic influences on behavior

assuredly profit from a definition of cohort based on family lineage.

Balt,es and Rienert (1969) and Buss (in press), and others have also

piovidd compelling. discussions which question the interpretations
of "cohort" effects dratwn from studies adopting Schaie's definitidn:

Like age, t44. cohort variable can take many forms, having a biological;

sociological,' or psycholooical basis. ,For example, cohort can be defined

by social or environmerirat-faceors which are shared.by a specific

segment of setie7 at the same time (e.g., fmtrthce iiito school, gradu-

ation, etc.) or 'by a society as a-clhole (elg., war, depression). Mat-

ters are made even more complex when it is, considered that menyl.of

these events are correlated with CA, time of measurement, and date of

birth. For example, the social state .0 Marriage:is correlated with

age in the general population but nevertheless may have pronounced
behavioral correlates which exist either-Independently or in inter-

action with age.

LONG-TERN DEVELOPMENTAL RESEARCH

Birren (1959) noted the. absence of developmentA scales which

reflect biological, psychological, or sociological "age" over the

long term, And Wohlwill (1973) as recently reiterated this Conclusion.

For this reason chronological age continues to serve as the predomi-

nant criterion for subject selection and matching in developmental

research.- It is Lthportant to note that the reasons for using chrono-%

logical age vary widely across different researchers and different

studies. For example, CA may used bacause our Society is "age

graded," because CA correlates with biological, or psychological ,

development, etc. Nevertheless, such relationships are not neces-

sarily'stable over the long term (e.g.,,Neugarten Sr Moore,'1968),

A second point is that very little developmental research is con-

cerned with behavior change over a large segment of the life span.

Impedipents to life-span research h'dve included the artificial segmen-

tation of the life-span as well as the failure of developmental

theories to encompass a whole-life perspective.

5 34
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. In addition, it has been noted here that developmental res archers_
rarely attend to the point of origin as a nominal property of a CA--

based scale. Rather, develcpment (i.e., behavior change over tits
is examined in relation to the developmentally "youngest" sample
included in the investigation. The suggestion here is that developmental
change is most properly assessed in teration to a sample selected
and defined in terms of process - defined criteria directly related tom.

the theiryor hypotheses central-to the investigation. Thus, the seg-

ment of,the life span which is sampled. in a deve'lopmental studymay
be restricted to the period over which the process is assumed to
influence behavior. ,Another implication is that the construction and
use of developmental scales based on process-related criteria need not

encompass the life-span'unless the process itself is assumed to be of
central importance across this period. Long-term developmental changes
in behavior may not be properly represented using a single,developmental
scale. More important fpr present purposes, however,,Is that shorter-
term changes may be efficiently described through the selection of
a scale defined by a functional point of origin and a metric of time

in the manner illustrated in Tables 2-5.
AN`

SUMMARY

Chapters 2 and,3 have highlighted the methodological complexities
involved in the conduct of research concerned with studying B = f(T)
phenomena.' The attempts to resolve the complexities through the use
of sequential sapling strategies such as those provided by Scahie
(1965)and Baltes (1963) must be viewed as very significant advance-

ments. fibiwever, it.has been shown that the use of a sequential design
(as a replacement for*the longitudinal, cross-secoSal;or tie -lag
design) is no panacea unless the hypothesis guiding the study of the -

B = f(T) phenomena Of interest are -firmly grounded in theory. Fur- .

thermore, the theory gui4a.ng the Lnvestigation should sptcify the under-
.

lYing scale along whichthe B=, f(T) phenomena change and the major
factors (e.g., age, time-of-Measurement, or- cohdrtYinfluending behavior
and performance for the time perioa, social context, and populatipp .

being studied. The theory should also provide strong direction to the .
researcher in'selecting the times ofltestineand the ages of children

from which to'collect-data. Finally, ,the theory must specIfy the
relation between the factors of age, time-.of-measurement, and coh. t,

It is only when this is accompliAled that a sampling mddel confo ing

to Schaie's general developmental model or the use of one of the chaie'

(1965) and Baltes (1968) can be selecttd as the optimal sampling strategy

for the behaviors being_studied. 'The ntrovevy between Schaie,(1965).t.,.C.9

and Baltes (1968) as to whether SCh e's model conformv,to a trifactor

or bifactor model is a .a.se in point which can. nly be settled in the

context of a theory which speaks directly to these issues and those

discussed in this section. T)
1:
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CHAPTER 4
'40

BE DETERMINATION OF THE SIGNIFICANCE OF CHANGE

BETWEEN PRE AND PgSTTESTING PERIODS

The measurement of change has been a favorite topic of psychometri-
cians. for years. It is a topic with considerable problems pany of which
are best avoided by following the advtee- of-Crionbach and c,Furby (1970) to
"...investigators who ask questions regarding gain scores::." that they
"...frame their questions in other ways" (p -80).

In many situations, gain scores appear to be the natural measure to
behbtained. IX some instances,.houever,the formulation of the questions
in terms-hf gains introduces unnecessary problems. In pther instances

gain formulation gives the-illusion that certain types of inferences
can be made when in facts they are not justified. In the latter case,.
the gain...formulation concear§ limitations that are inherent in the data.

In this chapter some of the major issues that arise in the me-asti-r-e,---1

m nt of change are reviewed and, where possible, alternative approaches
e discussed. The measurement of individual differences i.peconsidered

first. This is followed by:a discussion of some of the concerns involved
in inferring treatment effects from group differences. The chapter is
then concluded with a section on accountability systems based on Student
achievement.

INDIVIDUAL DIFFERENCES

Some of the best known problems in the m urement of change Arise
in situations where there is an interest it measuring individual diffei-
ences. "It may be desired to identif individuals who gain unusually

large (or small) amounts'so that ese individuals may be given special
treatment. In the case of soy performance contracts, individual gain
scores have been used as the basis of determining payment to contractors.
In other situations there ay be an interest in identifying the correlates
of change. While not volving individual change scores, as such,
correlational uses o change scopes are also considered under the heading
of individual diff: ences.

'

Difference Sc. es

The 'ost natural measure of change from one point in time to,another
is the simple difference score. The'dieter quite naturally is interested
in t difference between his pre diet weight and his post diet weight.

It s somewhat ironic that this simple procedure results in a score
th several major defects.

N'ggative correlation with pretest (e.g., Bereiter, 1963; Thorndike,
1966):: A major disadvantage of the simple difference score is that it
typically has a negative correlation with the pretest. The correlation

5 8
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of a pre measure, X, with the difference between a post measure, Y, and

that pre measure is

= Px av - ax
PXD

Gx2-1-Ccc2-2Pxy Gx Gy

(4.1)

where D = Y -,X, ox and Cy are the standard deviations of X and Y respec-

N
tively, and-oxy is the correlation between X and Y., It is clear from an

inspection of the numerator in equation 4.41.1that the correlation between

D and X will be negative unless p xy 0 y is greater than ox. Typically,

pxy oy will be smaller than ox because the correlation between X and Y

must be less than one and the standard deviations of the pre and post

measures are often of relatively similar magnitude. Although there is

a tendency for the correlation to be negative it is, of course, posSible

for the correlation to be positive but only if the standard deviation of

the post measure, Y, is larger than that of the pre measure, X, and

generally substantially so. It should also be noted that since the two

terms in the, numerator of equation 4.1 are of opposite sign, the magnitude,,-

of the correlation will usually be smallin'absolute value.

An implication of the negative correlation between D and X, is that

- ,large positive D's are more likely to be observed for.persons with low X

scores whereas persons with high X scores would have large positive D's

only rarely. Thus, if individuals with high D scores are to be selected,

there will be an overrepresentation of people with low X'scores as an

artifact due to the negative correlation between D and X.

Low ReliabIllty-(e,g,-; Lord, 1963):,- Given the standard assumptions

of classical test -hbry, the reliability of a difference score is

PDD'

, a2
Pxx' kix r-yy -y `

0
Pxy Gx(3y,

2
ax
2

+ Oy - 2pxyax
1 e

(4.2)

where pxxl and ox are the pretest reliability and variance, pYY
r and a

2

are the posttest reliability and variance, and p xy is the correlation

between pre and posttests. Consider the special case of 4.2 where

GX Gy ariaPXXI PYYI P

then plow can be written

PM' P Pxy

1-p
. xY

(4.3)
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Although 4.3 appli46fonly for a specialized situation it may be instructive

to Consider values of PDD' for selected values of p and p xy. .
This is

done in Table 4-1 and as can be seen there, the value of PDD'
is dis-

couragingly low,when pxy is at all large.

Of course, one way to obtain more reliable difference scores is to

have a low correlation between pre and post scores. Under such circumstances,

however, it is questionable that the pre and post measures are getting at

the same construct which would seem to be a prerequisite for the difference

score to be interpreted as an index of growth.

An implication of the low reliability of difference scores is that it

is quite risky toimake any important decisions-about individuals on the

basis of gains fl-om pre to post tdsting periods. A practical situation

where the low reliability of a difference score causes problems is that

of performance contracting. Even without .any real change it is possible

to find substantial numbers of individuals with large difference scores

due simply to the low reliability of these scores. Stake 4971) has

illustrated this problem. He concluded that "...owing to Linreliability,

gain scores can appear to reflect learning that actually does not occur"

(p. 587).

Lack of Common Trait and Scale (e.g., Bereiter, 1:96Z; also Chapters

5 and 7 of this report) : it would ha,rdly,e sensible totstimate a

person's gain in weight by subtracting the number of pounds he weighed

at time 1from the number of camps he weighed at time 2. To make sense

the same scale units must-be-used at both points in time. SimiMly,

it would make no sense td subtraCFX-p-re-measure of height,from a post

measureof weight to get an estimate of weight necessary to

measure weight at both points in time.

,The .need for a common scale and trait at pre and posttes ng periods

which is so -obVious with the above physical exam sometimes less

obvious, but no less essential, in an edu onal context. For example,

if arithmetic test A was used as the e measure and arithmetic test B.

as the post measure 'it might be fo gotten that the units of the two tests

are unequal. Even. more likely t might be forgotten that test A consists

primarily of addition proble while test B consists largely of subtraction

problems. Under such Con tions the difference scores would hot necessarily

be measuring gains alo g the dimens4on measured by test A any more than

the difference sco s in the two examples involving weight measure weight

gain. Even whe the same test (or parallel forms) is used as the pre

and post measures it is sometimes the case that different constructs

are measured at the two points in time. For example, an item which measure

problem,solving skill at one point in time may measure memory at a ate ter

point in time.

Residua/ Scores

Problems inherent to difference scored have led a number of people

to seek altenatives. One of these is the residual score which is largely

Motivated by the desire for a score that has a- zero correlation with the



Table 4-1

Difference Score Reliability as a Function of the

*

Reliability of the Parts and Their Intercorrelation

Correlation
of Pre and
Post Score

Reliability of Pre and of Post Scores
(assumed to be equal)

.7 .8' .9

.5 .40 ,/.60 .80

.6 .25 .50 .75

.7 .00 .33 :67

.8
. -- ..00 .50

.9 .-....
4

.00
t

*

1

Assuming per, = p
yy

, and ax = ay .

61

0

.,,
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pretest (buBois, 1957; Manning & DuBois, 1962). As noted by Croak.ich

and Furby (1970) "One cannot argue that the residualized score is a

'corrected' measure of gain..." rather it "...is primarily a way of

singling out individuals who have gained more (or less) than expected"

(p. 74).
.i,

A residual score, R, is obtained by subtracting the predicted poSt-

test score, Y,' from the correspondin, observed posttest score, Y. The

predicted posttest score is obtained from the linear regression of Y(s

on the pretest, X. The zero correlation between X and R follows imme-

diately from the way in which R is derived and is seen as a major advan-

tage over difference scores because residuals do not give an advantage to per-m

sons with certain values of the pretest scores whereas, difference scores do.

While solving the probleth caused by the correlation between differ-

!
ence and pretest scores residuals, like difference scores tend to be

unreliable. As indicated by O'Connor (1972) the reliability of a re-

sidual score can be written as

2

P (2

PPR' Y7
- 2 --A1

Values of the reliability of rest 1 scores areNreported in4aVle 4-2

for selected values of o and p and the assmplion that p
xy yy'

= P. The values of p and p used in Ta e'4-2 are the same Ohose

used in Table 4-1.

Although, the residual score reliabilities shown in Table 4=2-..a

somewhat better than the cor'respft,ding difference score reliabiliti

shown in Table 4-1, they are still disappointedly srsall whenevet the

correlation of pre and post scores is large. Furtchermore,;residuals

are usually of most interest in situations'where the\pre-post correlation

is large relative to the reliabilities of the parts. 'Thus, the same

cautions due to unreliability of difference scores also apply to resi-

dual scores.
4

Estimated True Change

Another alternative to the raw difference score approach is to

estimate "true" change. In other words, the change that would be

obtained if there were no errors of measurement is estimated. ',The'

true change is presumably the quantity of real interest whenever an

attempt is made to measure change.

In the case of a single measure there is a perfect ,correlation

between the estimated true sc.ue for that measure and ,the observed

score. Hence, for most purposes the .observed score serves just as

well as the estimated true score. Whenever two or more measures are

available', however, the estimated true score based -on all available

inf"6norftation will ordinarily have a less than. perfect correlation with

the observed score of the measure. Lu the case of a difference

score both the pretest and the-posttest,.and if available; other

scores as well provide information about the r.11,e difference score

and the resulting estimated true score may result in noticeably

6



Table 4-2

Residual Score Reliability as a Function of thel

Reliability of the Parts and Their Intercorrelations

Cor lation Reliability of-Pre and of Post Scores

of Pre d (assumed to be equal)

Post-Scores .7 .8 .9

.5

. 6

. 7

.8

.50 .67 .83

.36 .58 .79

.12 .42 .71

-- .09 .54

.9 .05

Assuming per, = Pyyl

3

4-6
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uld be obtained from raw dif-

Regression Estimates (Lord, 1 1958, 1963), McNemar, 1958; Cronbach

an rby, 1970; :larks & Martin, 1973'): Giv estimates of the reliabili-
4es of the pretest and,of-th e...posttest as wen as their variances and ,

tier_ it is possible to obtain estim es of true gain using

multiple regression procedures. The basic formula be found in Lord

(1963, p. 28). Cronbach and Furby (1970) extend th formulas by dis-

tinguishing between linked measures (i.e.., ones with ore- d errors)

and independent measures. They also torlaideX__She possib]ity of usi other

available measures as predictors.

As Lord (1963) has shown with an empirical example, persons 'th the

largest estimated true difference scores are not necessarily those .th

the largest observed difference scores. in particular, persons witty+
relatively large pretest scores aremore apt to be among those with "large"

gains when estimated t1s ue....difference scores (Lord, 1963, equation 3) are.

used than then raw difference scores are used. Thus, the estimated true

difference scores obviate the objection that difference scores tend to

favor persons with low pretest scores.-

As noted by Cropbach and Furby (1970), it is not necessary to limit

the estimation to the measures involved in the differencetscore. Any

'treasures that are available may be used along with the pre and the post

measures to estimate the true differencekscore. As shown by Tatsuoka

(1975), the additional measures will improve the prediction of the true

difference if 'they are correlated with the errors of measurement on X

and/or Y. In practice, the addition ofmore predictor variables would

probably improve the accuracy of the estimate relatively little unless

the pre and post measures'were of low reliability.

The reliability of estimated true change is equal to the squared

multiple correlation of true change with the predictor variables, i.e.,'

with X, Y and possibly other measures. It will always be as large or

larger than the reliability of a simple difference score (Tatsuoka, 1975).

When plc;t = pyy/ and ax = ay the.reliability of the estimated true

.difference scores equals that of the raw difference scores (see equation 4-3).

'If the pre and posttest reliabilities and/or the pre and posttest variances.

are unequal then the'reliaUility of. the estim4ed true difference scores

will exceed that of raw difference scores but typically only`ghtly.

For example, if--o 1 = .85, o
YY

= .90, ax = 1.5, ay = 1.7, and pxy = .7

then the reliability of the raw difference score computed from (2) is

.600 which can be compared to the reliability 'of the estimated true

'difference score of .613.

Linked vs. Independent Observations (Cronbach & Furby, 1970; Werts,

`Itireskog & Linn, 4972):. All Of- -the preceding discussion depends on the

u5ual,assumptions of classical test theory.. In particular, it is implicitly

assumed that the pretest errors of measurement are uncorrelated lth the
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posttest errors of measurement. Where the same instrument is used to

obtain both pre and postl measures the assumption of uncorrelated errors
of measurement maybe especially dubious. Thus, it is desirable to use
estimation procedures that allow for the possibility of correlated errors

of measurement on the pre and posttest. To do so, however, requires' the

ay.klab(ility of more information in the form of multiple measures than

is often available in practical settings.

cronbach and Furby (1970) have formalized the distinction between

linked and independent observations. They distinguish two types of

error components. For linked observations (e.g., the'same form of a

test used as both the pre and the posttest) one type of error component

would be assumed to al:7e a nonzero correlation. On,the other hand, inde-,

pendent observations uld be assumed to . ve both types o error components

uncorrelated. The dis inction between lin . eppndent observations

leads to different fo las for estimating the reliabilities of difference

scores and true change. Basically the formulas require that a distinc-

tion be made between the correlation of X and Y where X and Y are linked

and where X and Y are independent observations.' Furthermore, separate
estimates 61 the Linked p xy

'and the independent observationso xy are

required.

Correlates of Change

Frequently the focus in measuring change is not on the individual

difference scores but'on their correlates. The interest is in finding

'variables that predict the amount of change. Measures of change may

sometimes be computed for individuals as a means to the end df correlating

these measures with other variables. Frequently; howeer, the change

measures need snot actually be coiteputed to obtain thef'desired correlations

of these measures with other variables.

The alternative approaches to measuring change'result in different

correlations of these measures with other variables. The different.es-

timates have different theoretical and practical implications.

Spurious Gorrelations (Lord, 1963). Earlier the tendency for a differ-

ence score to have a negative correlation with the pretest-was noted.

More generally, the correlation of a raw differenCe score with another

variable that is partially a function of the pretest or posttest is

usually considered spurious (Lord, 1963, p. 33). The spuriousness is

the result of the same errors of measurement occurring in the difference

score and in the variable, with which it 'is correlated. In the ease of

the correlation of D = Y - X with X,the same errors of measurement that

are positively weighted forX are negatively weighted for D and the

result is usually a spurious negative correlation.

Attenuation ,(Lord, 19 3): Unreliability has the effect of attenuating

correlations. This is tr of all fallible measures but becomes of major

importance when the reli ility of a variable is quite low as is typically

the case for measures of change. The practical implication of the large

degree of attenuation that is typically encountered 'with difference scores

is that core ations involving a difference score will tend to be quite
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0

low "which is ler discouraging for someone who is interested in fi ding

correlates of chang

Tart and Partial Corre tions:- If residual scores rather than

difference scores are used in rrelatiOnal studies, the result is ,tte

same asa pat Correlation. That is, the pretest score, X, is partialled

out of the posttest score, Y, and the residual is correlated with arhird

variable, W. Note that ,X is not partialled out of W but only out of Y.

The result is called a part correlation. Thus, X is held constant statisti-
i

cally with respect to Y but not with respect to W.

7- A more fam or elational approach is to partial X out of both

Y and W. The result is cal e. : II artial correlation and has ,a somewhat

simpler interpretation than the part,c -lation since X is held constant

statistically with respect to both rand W in ad for just one of them
. ,

as in the case of part correlation. If X,'Y and 'lave a .iLltivariate

. normal distribution, thenvthe partial,correlation,af nd,W with X

partialled out is simply equal to the correlation, between 4 and Y for

bany fixed value'of X. This would often seem to e-a coeffic nt'

interest where the focus is on correlates of change from re to posttesting'

perio
.0,

As previously noted, however, residual scores c not be onsid-,

ered as`-better measures of change. They merely represent t -t,---part a

score that is not linearly predictable from the variable that''ispartia ed,

out. --Nonetheless, the partial correlation provides a means of identifyin

variables that can predict posttest scores of individuals with equal

pretest scores.

The problem of unreliability that runs throughout the'measurement of,

change is also a,major concern with partial correlation. The direction-

of the effect of unreliability on a simple correlation is known in'advanCe.

Unfortunately, this is not true of partial correlations (Lord, 1963, p. 36).

Ln the case of.partial correlations, the effect of errors of measurement

maybe to change the sign of a partial correlation. As shown by Linn and

Werts (1973) it is possible for errors of measurement to result in a_

partial correlation of zero where the partial correlation' among the error

free'measures is non - zero. For these reasons, it is particularly important

to make corrections for attenuation when using partial correlations.

Partial-Regression Weights: Within the context of a linear model,

the relationship of a variable, W, with change might be evaluated in terms 1

of the regression of the change on W and the pretest'. Werts and Linn (1970)

have shown that the resulting partial regression weights can be readily

obtained'from the partial regression coefficients in the regression of

the posttest on W and X. Hence, there is no need to actually use difference)

scores. This is true with or without corrections for unreliability of the

measures.

Recommendations (Individual Differences)?

One of the most common uses of change measures is as criteria in

correlational studies. The goal of such studies is the,identification

of variables that predict who will gain the most ih a particular situation.
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Cronbach and Furby (1970) argue that it is preferable to phrase such

questions in terms of partial correlations rather than correlations

invIving difference scores or in terms of part coelations. We concur

with'this recommendation. Regardless of the way ijkwhiCh such questions

art phrased,, however, it is important to take the unreliability of the

measures into account.

In the case of partial correlations, taking, the unreliability into

account "...poses somewhat of a dilemma, since, first, it is often hard

to obtain the particular kind, of reliability coefficients that are

required for makingtheappropriate correction, and, further, the partial

corrected for attenuation.may be seriously effected by sampling errors.

These obstacles can hardly justify the use of an uncorrected coefficient

that may have the wrong sign, hou ver, (Lord, 1963; 36)."

TWo other possible cases of range measures relating to indiAddual

differences that are discussed by ronbach and Furby (1970) are the

identification of individuals with'unusualry large (or small) gains and

the use of change measures as theoretical constructs. In neither case

are change scores needed. In the former case the regression approach

outlined by Cronbach and Furby is preferred. In the latter case, linear

combinations other than Simple difference scores, with the arbitrary

ights of plus and minus one, should be allowed (Cronbach and Furby,

'197

GROUP DIFFERENCES (INFERRING TREATMENT EFFECTS)

Question about the effects of ekper'Imental,treatments or Of variables

involve d in ob ervational studies are frequentlyPR'rased:,in terms of gains.

For example, does treatment ,A result in a larger gain that- .,treatment B?

Do students in integrated schools gain more than`students in'segregat d

schools? Do studepts in "open" classrooms gait more than those'-in "

tional" classrooms? Although these questions seem intuitively reason

it does not follow that the best' approach"' to trying to answer them ill

involve the use of measures of change as dependent variables. Indee

"..,There appears to be do need to use measures of change as dependent

Variables and no virtue In using them ( Cronbach and Furby, 1970, p. 78).

An important distinction among investigations'aimed at inferring

treatment effects must be made between studiei--4

and those that don't. For Studies with random assignment a pretest serves

primarily as a means of increasing statistical power. Where treatment.

groups are not formed by random assignment it isioften hoped that the

pretest will provide a means of allowing for preexisting differences.

Random Assignment

When treatment groups are formed by randomby assigning individuals

(or more generally units) to treatment. conditions, the posttest alone is

perfectly suitable as a dep4ndent variable. A test of the null hypothesis

of equal posttest means for the treatment groups is appropriate'for eval

uating treatment eftects. If pretest measures are available in this

context their potential usefullness is best evaluated in terms of the

effect of each use on the power of the statistical test.
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A pretest may'increase the preciSion-of an experiment The exnt,to
which experimental precision is improved depends_On the way in hich the

pretest information is used as well as on the nature and Mag ,of the

pretest-posttest reratiOnship. Differencet scores are e,,possi but

not the only one. Feldt (195-0 compared three potential Ltes of onc itant

variables: (1) blocking, (2.) analysis of varAance on difference scares,

and (3) analysis of covariance. 4e clearly shiews that among these th

approaches that the difference score approach has the least, precisio
Thus, on'the basis of precision the choice would ordinarily be betw n

blocking and, the analysis of covariance with the ana vsis of covariance \

being the most 'precise where the correlation betwe pre and posttest*, -

is greater than ,6 (Feldt, 1958):

In pretest-posttest designs the correlation between the pretest and
the posttest is frequently .7 or higher. Thus, the,analysisof c ariance

would seem tp be an attractive approach to the analysis of such data
Before this technique is wholeheartedly accepted, however, several lim

tions of the technique need to be considered. As Elashoff (1969) has

argued, the analysis of covariance is a, delicate instrument". Elashoff

notes that the analysis of covariance involves'a number of relatiVely

strong assumptions and violations of some of these assumptions may invali-

date the technique. ,Vaere the assumptions of linearity or of homogene-1157--------
of regression seem questionable it may be preferable to use the pretest

as a blocking variable rather than a covariate. In any event, however,

there seems to be little justification for using difference scores.

Another 'assumption of the analysis of covariance is .that the covariate-

is measured without error. Violations of this assumption are most-trolse:

some ,

be consideFed again in that context. Even with random assignment

errors of measurement limit the value of traditional analysis of covariance,.

But, to niques are available-for allowing for errors measurement in

the covar ate (Lord, 1960; Porter, 1967).

Preformed Groups

Random assignment is seemingly impossible in many. situations where,

answers to questions about treatment effects,are sought. Children cannot

ordinarily be randomly assigned to schools or to major programs Such as

Head Start. Even. if such random assignment were administratively feasible,'

it might not be desirable on grounds other thanthe desire for a clean

experimental design. Without random assignment it is, of course, possible

that differences-that may be observed in the posttest score areth)a result

,c4 preexisting group differences rather than-treatment effects. 1, at is

deslred is a means of allowing for preexisting group differences. t is

the hope of achieving this goal that often leads to he use of diffe ence

scores or the analysisof covariance.

Lorc01967, 1968) has provided a compelling analysis of the use of

difference scores or the analysis /of covariance to infer treatment effect

from studies involving preforme-d-groups. lie has clearly shown, that the

G, 6"
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, 4"
two approachet can lead to contradictory results.' The basic problem is

one of making the proper adjustment for any preexisting differences.
Unfortunately, there is 20 way of knowing wi-Cch of these or any other

techniques provide the proper adjustments. \ccording to'Lord "...there

simply is no logical or statistical pYocedu that can be counted on to

make proper allowances for uncontrolled preexisting differences between
groups (1967, p. 305)." t 4

.)
This discouraging conclusion is alsokr ached by Meehl (1970) and by

Cronhach and Furby (1970) among others. Without assurance of proper

adjustments for preexisting differences, there is'necessarily a concern
about the possibility that,treatment effect, however obtained, may be
subject to major, sources of bias. In order to evaluate the bias in
various nonexperimental research situations it is important to have a ,

clear understanding of what is meant by a treatment effect. Rubin (1972)

has provided a definition whi h is useful from a formal point of view .

as well as beipg consistent th intuitive notions of a "causal effect."

His b sic definition of an ffect is specific to each unit' (e.g.., individ-

ual t
qt

udent, classroom, sch ol) under consideration, to a particular time
interval (t1 to t2) ipd to a particular pair of treatments (e.g., experi-

mental and control). The effect of the experimental versus the control

treatment on a dependent variable, -X, is the difference between the score

on X that would-have been obtained by the unit at t2 if the experimental

treatment had been introduced at t1 and the score on X that would have
. ..

been Obtained by the unit at f2 if the control treatment had been intro-

..i-

,

.

duced at t,. . ..

, .

.
In:. practice it is impossible.to measure the effect defined aove

,

for any unit because only one treatment can be introduced at t1 and it is

iMpbssible to return to that time to introduce thp other treatment. Nor

is* IX possible to meaiure the average effect of all units for the same

reason. Nonetheless thisoformulation is useful because Under random
assignment of unitsto treatments, the expect5::ifalue of the difference

in mein scores on,X is equal to the average difference that would be
observed if all units could be obsloved under both treatment conditions

during the same time interval- Thus, the sense in which the randomized a

dtperiment provides an unbiased eseimate of the treatment effect is

t clear. Furthermore, a framework is provided for considering factors'in

nonexperimental designs that "result in biased estimates. -In this way it

may sometimes be possible to specify conditions under wich estimated

treatment effects may be biased in one direction or the other or to clearly

specify the a priori assumptions that would have to be satisfied for the

estimate to be unbiased. '10

One of,the many potential sources of bias in estimated treatment

effects from the analysis of covariance is due to errors of measurement

in the p4etest (Porter, 1967; Wert and Linn; 1971). The effect of un-

reliability ih the covariate is 'a reduction in the slope of the regressionlit 4

of the dependent variable on the covariate. Where there are preexisting

6

o.
7
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V
differences in the group means on the covariate the reduction in slope

leads to bias inthe estimated magnitude of the treatment effects.

The direction 'of the bias due to unreliability of the'covariate can

bedeterminad and if adequate estimates of the cavariate reliability

can be obtained, the procedures outlined by Porter,cn be used.

Single Group Designs

For a single group such as a school or classroom there mgy be an

interest in the amount of change that occurs during a given time inter-

val. Once again there is no real virtue to differerice scores (Cronbach

.and Furby, 1970). A simple t-test for dependent samples will provide a

test of the null hypothesis that the mean pretest score equals the

mean posttest differences:

While such differences may be due to the school experience they

might also be due to a host of non-school experiences that students have

during the interval between the pre and pos,ttets.' An obsetved differ-

encg may be attributable to variables associated with increased chron-

ological age which have nothing to do with Ischopl effects per se. It

would be desirable to separate differences in test scores that are

associated with chronological age. Goulet (in press) has proposed an

approach that is specifically designed for this purpose.

0Goulet (in press) suggested a sampling procedure that wayld ,provide

for independent estimates of effects associated with chronological

age and those associated with amount of schooling as well" s their in-

teraction. His design would require that nonoverlapping random samples

of students be tested at different points in the school year. The

students' scores would then be categorized according to chronological

age and time of testing. A simple desigu,involving four different

samples of childfeni is shown below.

(
Abe at Time of testing

Testing Date Sept. Jan.

7-3

7-7

A B

D

The means based on subsemplA A, B, C and D above povide the basis

for estimating effects associated with"'schooling that are.independent

of affects associated with age. As inditated by Goulet, (in press)

the desired estimate is Simpay

4 4

X
B

+
D

- X , - XC

2

. ' v .

where,the X's refer to the suf)sfimple means. Coulees suggested approach

does, not guarantee that ,theestimated effect is due to school. It still q

might, for example, be-the result of factors outside the school experience

1i J
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which'tovery with that experience. It,demanstrates, however, an ap-
proach for separating two major sources of competing hypotheses about
clusters of variables that might influence pupil performance. By hold-

ing constant Sources of variance associated with age; the estimates of
"school, effects" are much more compelling than when the estimates in-
volve a combination of school associated and age associa ed effects.
A more complete discussion of sampling designs such as' .e above is

provided in Chapter 2.

ACCOUNTABILITY SYSTEMS BASED ON STUDENT ACHIEVEMENT

There may be fairly general agreement with the conclusion stated
by Lord (1967) that there is generally no way of knowing what adjust-
ments should be made to allow for preexisting group differences. None- ,

theless many practical deciiions must be made without the aid of ran-

domized experiments. These decisions must be made on,some basis. Even

with all:of-the pitfalls that are encountered in trying to interpret
information that can be gleaned from data collected for preexisting
groups, it still often seems-to be the best alternative. i

Responses to pressu s to be accountable have taken any forms.

Educational accountabili has many meanings and as Glas (1972)

has indicated not all'of the uses of the term require th measurement i

of student performance. One of the more common interpre ations, however,

is that educators shoufS be accountable for what student learn. For

this interpretation of accountability the results of st dardized

achievement tests would seem-a natural source of informa ion not only

for assessing current Status but for evaluating progress Unfortun-

ately, there is great potential for misuse of standardiz d test results

for purposes of educational accountability.

Norms as Standards

Knowing only a student's raw scare on a. test would
tially no information. To derive meaning the content of

be known in some detail. If the content is described in
detail then a statement that a student got 20 of 40 jte
begin to take on some meaning b-ut would s4111 not be a s
for answering a parent's question. about whether that wat

are two major approaches that are commonly taken to answ

tion: criterion referenced and norm referenced.,'The mo

rovide essen-
the items must
sufficient
correct would

fficient basis
good: There
ring' this ques-

cotamon,.of

these is the norm referenced apprOach'which simply provid s a comparison

of the student's performance to"some specified group. The norms may

take the form of percentile ranks, grade equivalents or sOme other type

of scaled score but basically the nArnis provide a means of interpreting

a students' performance relative that of other studentg.

Grade Equivalent Scores: A problem with the,. use of norms is that the

norm is sometimes confused with the standard or ideal. It is obvious

that not all children can be above the 50th perceritl.le: Ft should be

just as obvious that not all schools can be above the 50th percentile

of school mean nprms. Uhen grade equivalents are used it is still the

case that not all children (or schools) can be above grade level but -

this may be less obvious with grade equivalent scores, than With some:

other types of scales.

7I
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The grade-equivalent score suffers from_a numbei of defects (see

for example Angoff, 1971). Most of these defetts stem from the surplus

meaning that is attached to the label. Because of these defects ivy the

grade equivalent the latest version of the Standards for Educational and

Psychological Tests recommends that they be discontinued or their use

discourageds(APA, 1974).

Change on Achievement Test Scales.
scale that is used, scores at a sing

pected to provide information about
notion that educators should be ac
implicit in it the notion of chan
point in time may provide inform
it cannot be expected do indic
was made in any gign inte
about past as well
about progress br.
posttesting periods.

ardless of the nature of the

int in time could hardly be ex-

the effectiveness of a school. The

untable for student learning has

. True, a measurement at a single

tion about strengths or weaknesses but

e by itself the amount of progress that

1 of time. To do this something must be known

present performance. The desire to know something

s us tack to/Sur concern about change from pre to

0.

Probably the most widely used scale for purposes of evaluating pupil

growth is the grade equivalent scale (see for example, Wargo, et al.,

1972). The deceptive'simplicity of grade equivalents makes them appear

particularly useful for the purpose of measuring growth. Lindquist and

i

Hieronomous for example, say that "Grade equivalent scored are best

suited for easuring growth from year to year (1964, p. 13)." "

,

Although Lindquist and Hieronomous go on to discuss limitations of

grade equivalent scores, these limitations are often overlooked`. One of

the potentially misleading characteristics of grade equivalents is that

the seem to provide a standard of "normal" growth. If educational

accountability is interpreted to mean that someone should be responsible

for the progress or lack of progress displayed by students, then some

notion of satisfactory progress is needed., To many people, the grade "

equivalent seems to provide the standard. That is, the gain of one grade

equivalent in a year's'time becomes ehe standard to be expected. Un-

fortunately, however, "...a year's progress in a year's time means dif-:

ferent things to -a teacher whose class begins the year near or above

grade level and a- teacher whosg class begins two or three years below

grade level (ROsenshine and McCaw, 1972, p. 640)."

Some of the prob ms encountered in trying to interpret gains on

standardized achievement scales may be illustrated by the followfhg

example results froM a school system. An attempt was, made to look at

the gain in achievement test performance for students in three broad

categories of ability as measured by IQ test scores. Standardized

:Achievement test data were obtained for students in grades 3 and 6. Re-

sults were also obtained for these same students the following year when

they were in grades 4 and 7. Grade scores.or grade`-equivalents were then

reported in reading and in 'arithmetic at each point in time and gain

scores were computed over the one-year interval. The mean scores and

mean gains were reported separately by school and for students with

IQ's of 114 or above, those with fQ scores of 98 to 113, -and those with

IQ's of 97 or less. This was done for each school and for the school

sx5tem as a whole.

C
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For the school system as a whole, the gains for each of the IQ

levels (L, M and 11) are plotted in Figure 1 for reading and for arith-

metic. Section (a) of Figure 4-1 shows the results for 3rd to 4th grade

gains on the Metropolitan Achievement Test (Harcourt Brace Jovanovich,

1970). The gains o served for 6th to 7th grade are based on the Edu--)

cational DevelopmerilkSries'(Scholastic Test Service, 1969; 1971).

From section (a) of Figure 4-1 it can be seen that from grades 3 to

4 the largest gains in both reading and arithmetic were made by the high

IQ group and the smallest gains by the low IQ group. As would be ex-

pected, the high ability students had a higher mean test score on the

pretest than the low ability students. At the time of the second test ,

the,gap between the two extreme groups of students.hadwidened. In

reading, the gap between the two groups was 1.5 GE units at grade 3

and 2.4 GE units at grade 4. The result is quite consistent with the

expectation that "the rich get richer and the poor get poorer." It is

also consistent with the results that have been reported indicating

that, as measured by standardized tests, the gap in achievement between

high and low SES or between minority and majority groups'tends to in-

crease with grade level.

The increasing gap in achievement between different SES or ethnic

groups has been interpreted to imply that the serlools are differentially

effective. The counter part for the illustrative schooL system is that

the system is pore effective with high than low ability students.

However, there are many reasons why such a conclusion may not be jus-

tified. Some of these reasonsl'are discussed below but first the 6th,

to 7th, grade results need to be considered.

Between grades 6 and 7 the mean gains in grade scores on the reading

test of the Educational Development Series-were: .6 for the high IQ group,

.7 for. the middle group, and 1.3 for the low group (see Figure 4-1).

he pattern is just the reverse of that found for grades 3 to 4. In

arithmetic, the grade 6 to 7 pattern was again opposite that of the grade

3 to 4 pattern with gains of .7, .8, and 1.3 for the high, middle, and

low ability groups, respectively. Consider the naive interpretation of

these data--at grades 3 to 4 the schools might be considered to be

more effective with the more able children but at, grades 6 to 7 they

might be considered to be more effective with the less able. Further,

imagine the sort of comparison that might be made among school buildings

or among teachers with a predominance of children frOm different ability

levels if the school building mean gains were compared.

In the example just given there are many differences between the

data at grades 3 to 4 and those at grades 6 to 7: they are based on

tests from different publishers which have different content specifi-

cations and different norm groups, and they are based On different types

of scales (grade equivalent in one case and grade scores in the other).

They also differ in that the same test form spans grades 3.and 4 but dif-

ferent levels which had to be vertically equated were used at grades 6

and 7. These differences may be more than sufficient to explain the seem-

ingly strange results that are shown in Figure 4-1 (Linn, 1974).
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Gains it Grade Equivalent Scales. The above resultA which indicated
that students with high pretest scores at grade 3 tended to gain more than
their counterparts with lowpretest scores may seem contrary to what would

be expected from knowledge f correlations of gain scores with pretests. 0
As indicated early in

with
paper gain scores tend to have a spurious

wnegative correlation ith the pretest score. The negative correlation of

pretest with gain comes about when the pretest standard deviation is
greater than the posttest standard deviation times the correlation be-
tween pre and posttests. This will necessarily be the case whqever the
pretest and posttest have equal standard deviationt. A property of the
grade equivalentscale, however, is that the standard deviation of trade
equivalent scales tends td'incrase with grade level and this increase
in standard deviationis sufficient to result in a positiv,e correlation
between pretest scores and gain scores.

The property of increasing standard deviations for grade equi-
valent scores at successive grade levels is illustrated by approxima-
ting these standard deviapions at two grades and for two subtests of,

-,. three widely used achievement test batteries. The standard deviations
were calculated by assuming a normal distribution of grade equivalent
scores and Subtracting the grade equivalent corresponding to Jhe fif-

tieth centile from the one corresponding to the eighty-fourth centile.
The test batteries, that were utilized are the California Achieve-

/ ment,Tests (CTB/McGraw Hill, 1970),_the Stanford Achievement Tests
(Harcourt, Brace Jovanovich, 1973) and the Metropolitan Achievement

Tests (Harcourt Brace Jovanovich, 470). -;for the reading subtdsts of tile

three test batteries, the estimated standard deviations for-grades two
and six for the above tests batteries changed from .925 to 2.27, from
1.70 to 245, and from_1.0 to 2.4: The grade- two and six standard de-
viations fot the arithmetic subtests of the three batteries changed from
.773 to 1.57, frOm'120 b,2.05'and from .7 to 1.4. In'gerigral,°)the,

estimatedistandard'deviations for grade, six are rou hly'double thote

for grade two and the necessary condition for a sitive correlation

seenbdtween pretest and gain is een to exist. ,:

Thus, the naive expectation of a gain of one grade ,equivalent unit'
in a year's time ignored i'he positve correlation, between gain and pre-
test that has been observed for the grade equivaleti. scale. "...nor-

mal or typical growtb,is often defined as 'One year,(1.6) in grade,

everyequivalent units for very school year,of instruction. However, 1.0

year of growth is typical only for students near the middle of the dis-

tribution (Prescott, 1973, p.,55)." As shoWneby Prescott, by coleMan

and Karweit (1970),.and by Wrightstone, Hogan and ,Abbott (undated)
students who maintain a constant percentile rank over several years would
showaverage,gains that are considerably different than 1.0 when the

constant percentile rank deviates substantially from 50.

,-- ,

In order' to investigate the generality of the above tendency, the
grade equivalent score deviations from grade level fqr hypothetical gtu-''

dents with constant percentile ranks of 20 and of-80 were plotted dfo-r

several different tests for grades 2 through 6. The4.results,fox the
Amc.tilreading and arithmetic tes&of three widely used. ad nent test bat!.

teries are shown in Figure 4 -2. The test batteries for w ich.data ate

plotted in Figure 4-2 are the Metropolitan AchieveMent Tests (Harcolitt

Brace Jovanovich, 1970), the California Adhievement Tests (CTB/McGraw,

1970) and the Stanford Achievement Tests (Harcourt Brace Jov4novich, J973).
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:N
The graphs shown in- igure 2 provide the basis for several general-

izations: (1) the average owth'rkqdir d to mainr in a constant per-

centile rank of 800 congid rably more than 1.0 ade equivalent unit

per year, (2) the averagle grciwth required to maintain a constant per-

centile rank of 20 is substantially le han 1.Q. grade equivalent

unit per year, (3) tUe average gain inslrade quivalept units required

to maintain a constant percentile rank of 80 is less for arithmetic

tests than for reading tests, and (4) the average gain in grade equi-

valent units required to maintain a constant percentile rank varies sub-

stantially from one test publisher to another.

Based on the results shown in Figure 4-2 the 3rd to 4th grade gains

for the illustrative school in Figure 4 -1 are quite consistent with what -----

would be expee'ted. The results for grades 3 to 4 certainly are dependent

on particular characteristics of the grade equivalent scale that are not

really fundamental to notions' of student performance. Thus, the result

that the more able students tend to gain the most may simply be an arti-

fact of the grade equiValent scale and the naive interpretation that the

schools are relatively more effectiqe for high ability than for low

ability students is suspect.

A possible conclusion based on the difficulties with the grade

equivalent outlined above is that percentile ranks might provide a

better scale for cpmparing growdrof groups of students that start at

different levels initially. Percentile ranks, however, suffer from

other limitations. They tend to spread Taw scores out in the middle of

the distribution and squeeze them together at the extremes. A dis-

tributign of Percent.ile ranks is necessarily rectangular and the raw

score distance between the 50th and 55th percentileis much less than

the raw score distance between the 90th and 9th,percentile. Due to

thid limitation of percentile ranks, Coleman,and Karweith, (1970) conclude

that they are not a useful type of score for measuring the amount of change

but they may be useful for measuring the direction of change.

According to the test manual, the grade scores .that were used to

summarize the test -results for the school system at grades 6 and 7

(Figure 4-1) were "... develdPed ix an attempt to utilize the strong

points inherent in percentile rank and grade equivalent norms while min-

imizing the inherent limitations of such norms scores" (Scholastic Testing

Service, 1971, p. 12). Grade scores are obtained.from standard scores

at each grade level with the mean set equal to the grade placement level

and the standard deviation sat equal to 1.0. According to the publisher,

"Score changes [in grade score units] of more than one unit indic

relatively rapid grol4th as compared with other pupils; score chang s

less than one unit indicate relatively slow growth as compared to other

students" (Scholastic Testing Service, 1971, p. 13).

A review of grade score scale properties (Linn, 1974) revealed

several undesirable characteristics of this type of scale for purposes

of measuring change. The most obvious disadvantage of this type of scale

is that constant raw scores,oVJF-Veveral points in time will result in

.Increasingrade scores and "apparent growth." Furthermore, the magni-

tude of the apparent change varies from one raw score level to another.

\ 77
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1 As far as the results in section b of Figure 4-1 are concerned,

there are two factors which may readily account for the relatively large

gains for initially low scoring students and relatively small gains for

initially high scoring students. First, by_setting the standard devia-

tions at different grade levels equal a negative correlation between

pretest and gain is insured. The second factor that is relevant to the

particular situation of the grade-.6to 7 results is that different levels

of the test were used at grades 6 Ind 7. As shown by Linn (1974)

difficulties in vertically eCiating tests and the large increase in the

scaled score equivalents of nimuri and chance level raw,scores when

the level of the test is channgbed could easily account for the apparently

larger gains of initially low scoring students than their initially

high scoring counterparts. Again'the results of Figure 4-1 do not

provide a basis for generalizatighs about the relative effectiveness

of the school system with different gtodios of students.

pne difficulty withNvertically equated tests is the large increase

in scaled score equivalents of minimum and.thance level raw scores when

the level of the test is changed is not limited to grade scores. It

is also a potential problem when grade equivalent scores are used with

vertically equated tests. Reported in Figure 4-3 for grades 2 through

6 are the grade equivalent scores associated with "chance level" per-

formance on the reading and arithmetic subtests of the three previously

used achievement test batter4es. As seen from Figure 3, the increase

in grade equivalent scores from one'level to the next for hypothetical

students who respond at random, varies considerably across each pub-

lishers' test and across the two subtests. However, even the minimum

increase o 6 grade equivalent units would result in apparent growth

for students w espond at the chance level.

The Wrong Norms. A number,pf other difficulties with using norms

as standards for'evaluating student progrdss might be mentioned but the

illustration of pne other problem should suffice,. Longitudinal data

are often thght to be preferrable to cross-sectional data because of

the possibilitx of cohort differences and because if you are interested

in the effecti of,a school it seems reasonable'to look at students who

have b en in the school for a given period of time. However, the avail:-

able'n rmative data on standardiied achievement tests are cross-sectional.

Lon udinal samples often suffer from considerable attrition. .Con-

sequentlY',the differences between data for a, longitudinal sample and the

test norms are apt to be differentially affected by selection factors

at different levels. This can be illustrated by data from a national study

of academic growth. conducted at Educational Testing Service uncier the di-

rection of Tom Hilton. The data for the, following illustratiori mere-

taken.frdm the extensive 'set of Tables reported by Hilton and Beaton

(1971) and have previously been discussed by Linn (1974).

The longitudinal sample of approximately 3600 students was divided

into two groups according'to high schoot curriculum: academic and nonaca-

demic. The scaled score means on one of the tests and the corresponding

percentile.ranks of the means are plotted in Figure 4-4 for these two

groups. The test was the Quantitative Test-of the School and College

Ability Tests, SCAT (Eddcational Testing Service, 1957). At the fifth

grade the academic group is well 'above the median of the norm group and

the nonacademic group is slightly above the median of the norm group.
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A

The percentile ranks of the means or both gr(oups drop sl,ightly from

grade 5 to, grade 7 and more sha'rply rom gr4kle 7 to grade 9. Between -...

grade 9 and grade 11 the academic grow maintains about the same.per-

centile rank while thesnonacademic group showS another drop.

The initial impressions from Figure 4-4\are that the nonacademic

students are-falling further and further behind the academic students

and both groups of students are losing ground relative to the national I

norm. Both of these results, however, may be the consequence of a ,

,

%

common problem encountered in longitudinal studies, namely attrition. i

The initial LTS grm4h study consisted of about 9,000 5th grade students.

Only about 40 percent of these students had test score data at grades

5, 7, , and 11 and the nonrandom nature of the attrition is apt to

have different implications at 5th grade than at 11th grade. 'For ex-

ample, studerits\who drop out of school between the 5th and 11th grades

are available for the norms group at grade,5, but not at grade 11.

For the longitudinal,Sampie they are excluded at,both points in tine

(Linn, 1974)
,

Prpblems due to using cross-sectional norms can ar1is even where

the "longitudinal data cover only two points in time w single

school year. Data from two points in a singfe year usually do not have

a major attrition,problem such as,was encountered for the data in

Figure 4-4. Nor4theless, using,fall data to interpolate the norms fdr

other points in the year may result in misleading "grdwth expectations."

For example, Beck (l975) has recently shown that norms based only on

fall testing tend to 'underestimate the actual spring performance of a

longitudinal sample that is tested it the\fall and again in the spring.

,

Regression'Apprbaches to Accountability

One of the better known apppaches to develoRirig an accountability

,system is the one proposed by Dyer (1970;.Dyer, Lihn & Patton, 1969).

F s approach, which was first described before the term °accountability

came into popular use (Dyer, 1966), is based on. what.he calls "the

pupil-change model of a School." Actudlly student change per se is .

never assessed in Dyer'sapproach,-instead, regression equations are

used to compute residual mean performance for a school. These residuals

form the basis for obtailing "school effectiveness indices."' ,

As initially conceited, the la/Er approach would distinguish four

major categories of variables callMi input, surrounding
conditions,

educational process, and output. The input and output categories of

variables refer to student characteristics measured, before and after'

a given period of schooling. While these groups, of.variahleS were

broadly conceived to include a wide array,of measures, as implemented

the input category is apt to consist of ptetest scores and the, output

of posttbst-scores.

Surrounding condition variables consistof the variety of home,

school and community characteristics that describe the conditions within_

which the school operates. Dyer (1970) distinguishes betw4en surrounding

,condition variables that are relatively "Yard to change" and those that'

are relatively "easy to change." Finally, eh( education process vari-

,ables consist of activities' of the school that may influence student

achievement.
,81
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With the four categories of variables in hand regression analyses

involving the input, output and hard to change surrounding conditions'

would be used to obtain "school effectiveness indices" for each output

measure. Specifically, using school means,- a given output or posttest

e would be regressed on the input measures and-hard tochange sur

ro' ding conditions would be used to obtain "school effectiveness indices"

for each output measure. 'Specifically, using school means, a given output

or 'posttest, score would be regressed on'the input measures and'hard to

change surrounding condition variables. Schools with'observed mean scores

on the.poSttest that were above the value predictdd for that school would

. receive 'relatively high school efi(ectiveness indices. Schools with

posttest means lower than prediLed would receive relatively low indices'

Only after the school effectiveness indices are obtained would the .

easy to change surrounding conditions, and the school process variables

came into play. The focus would be on outliers, i.g.,,those-,schools

that have posttest means much better(or worse) than predicted from the

pretests and.hard to change surrounding conditions. The extreme out

liers, which in another context Would be called l'overachiever and under

achievers" (Thorndike, 1963), woutd then be compared in terms of the

easy to change surrodiiding condition variables and the educational pro

cess variables.

Dyer was well aware that his proposed approach giveg no,guaranteg

of fihding the characteristics of schools that produce the maximum

achievement. Rather the approach cvas conceived of as a kind of search

strategy for identifying variables that might be_instrumental.t.p better

student performance. The actu'al efficacy of these variables codid then

be investigated in experimental studies.';

There are a number of questions that might'be raised concerning

Dyer's approach. As indic4ted in the first section of this pape,.

residuals still may 40 citestionable. '1)yer, Linn and Patt (`l90)

provided results thaeare relev'aht to one, type of reliabilitY' the

school residuals. school systems Were subdivided into two rand 6m

halves and residuals computed for each half Sample. The correlations of

Xhe half.sample residual scores ranged from .73 to .88 for six different

posttests. And these results sugwst reasonable stability,,less

encouraging results were obtained by Forgyth (1973) when he investigated

another4type of reliability.

lyorsyth (1973) ,obtained school residuals according to the Dyer

modglifor two successive time intervals (posttests obtained in-1968 and

"in 13x69)% The correlations between residuals'obtained for schools at the

two different points in time ranged from-.11 to .50 for 10 posttests with

a median correlation of only .28. Thus, it would'appear that the resi -

duals may be relatively stable for.olike subsample of stUtehts to another
,

within a single year but relatively unstable from one year to the next.

This.instability,over time is seen-as a mafor limiatioa on .the poten

tial usefulness of this approach.

,1 Recently, Marco (1974) cotp4Fed'four different methods of obtaining

school effectiveness indices in addition to the one originally suggested

8 2
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by Dyer. He, ound that all-five methods yielded indices that were

'

intercorrelated and reJiatively stable from one half sample to

andther. His study does not.adtress the issue,oestability overtime

or the practical utility of the indices, however

6

CONCLUSION

' This paper. has ranged over a fairly broad spectrum of topics that

share as a common thread concern about measuring change from pre to

posttesting periods. Problems in measuring change abound and the vir
tues in doing so are hard to find. Major disadvantages in the use'of

change scores are that they tend to conceal conceptual difficulties and

they give misleading results. The former tendency is apparent when change

A scores are used to compare preexisting groups which tends to conceal

to the arbitrariness of this particular form of adjustment. The latter

tendency is auarent where various standardized test scales Such as

grad- equivalents or percentile ranks are Used to assess gains of dif'

feren groups of students.

To,conclude with Crohbach and Furby (1970) "...that investigators
who ask questions regarding gain scores would ordinarily be better

advised to frame their questions in other sways (p 80)" may seem very

discouraging. If so, however, it is probably because more is expected

from gairn scores than they can reasonably be expected to provide.

They cannot, fbr instance, be expected to make up for the lack of random

assignment, nor can other adjustment techniques. For.most purposes,

a pretest score is best treated on the same footing as other measures

that are obtairted at the time of tag pretest. Where appropriate,

regression, analyws that treat the pretest no differentiy than other

independent varables (or Predictors) and the posttest as the dependent

variable avoids many of the difficulties that are introduced by ggin

scores.

1
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'CHAPTER 5

VERTICALLY EQUATED TEST FORMS

1

4
In large scale testing programs it. is frequently necessary and

desirable to have several, forms of a test. Multiple forms are essen.eiai

for admissions tests .such as the College Board's Scholastic Aptitude

Test or the American College Testing Program's-Tests: The Rurposeof
the equating is to convert the raw scores obtained from tW forms of

the test "...so that scores derived from en two forms after Conversion

will be directly equivalent (Angoff, 1971, p. 562)" In the case of

admissions tests, equating is essential becAuse comparisons are made
between persons who take different forms of the test and without the

equating persons who happened to take one form of the test that Zaas

inadvertently more difficult than another form would be' at a dis-
advantage relative to their peers who happened to take the easi form.

Equatitg test forms that are designed to measure the same thing

for thy, -same population is sometimes referred to as horizontal equating
(see, for example, Educational Testing Service, 1957, pp. 7-9). Vertical

equating, on the other hand refers to the process of converting scores of

forms of a test designed for populations at different educational levels

to a single scale. In horizontal equating, different forms o the test

would normally be designed to have comparable Item content and similar

distributions of item statistics. The equating adjusts for unintended

differences in difficulty of the tests or differences in distributions of

the examinees. In contrast, form6 to be vertically.equated differ .
intentionally in the difficulty of the items for a single population of 4

examinees and in their content specifications as well. For examplec_ah_

appropriate arithmetic item might be 4 + 3 = ? at grade 1, 155 - 62 = ?

at grade 3,'67 x 4 = ? at,grade 5, and 5.45 + .25 = ?at grade 7. To

be sure; such items are all in the general domain of'arithmetic but ;-

they are not necessarily indicators of a single common trait. In

other'achievement areas even greater diversity of item type, difficulty,

and content' frequently can be found as changes in the level of a test ,

occur while a common name and supposedly common scale is maintained.

It is no surprise that the problem of vertical equating is substantially'

more difficult than that of horizontal equating.

f

Lp this section, the two most commonly used equating procedures will

be biiefly reviewed. The adequacy of these Methods for the vertical

equating problem will then be considered. Firially,.consideration will be

given to alternative equating methods with special emphasis on the use

of the Rasch model.

LINFAR'AND EQU PERUINTILE METHODSI

'Two sco es, one on form and the other on form Y ,(where X and

Y measure the ame function wi h the same degree of reliability),

may cdnside ed equivalent i their corresponding percentile ranks in

any g Ven gro are eqUal (Angoff, 1971, p: 563)." This commonly accepted

defin tion sug ests immediately the, equ percentile method of'equating.

All t at is re uired fdr the equipercentile method of equating is the u

8
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th
cumulative frequency distribution for each test., The k score level

th

4

on form X, X
k

, is converted to the same scaled scores as the 1 score

level of test Y, Y1, if the percentilesiol and Y
1

are the same. Ih

practice; smoothed frequency distributions are t ically used and raw

.scores on the tests corresponding to some predeter ned set of.per-
,

centile ranks are found by interpolation. Also, there are a variety

of different study designs that might be used for the equating. For

example, both tests may be administered to a single group, the ests

may be administered to a different randam sample from the same population,

or the tests along with a common anchor test mpy be administered to a sam-

ple from different populations. For a detailed description of these

and otherPOiiiEle designs see Angoff, (1971). Ilnoring theselp4ecedu-

ral details, however,. the equipercentile method is quite straight forward.

Linear equating would -d-7.assign the same scaled score to scores and

Y
1

if they' correspond to the 'same standard score, that is if

K."

Xk -X Y
1

-Y

S
x

where X Y, and S are tht means and standard deviations of X and Y

respectively. A no by Angoff t19-74), the equipercentile and linear

equating methods coirici the two marginal distributions differ

3nlx in their first and second .m.oments,. More genetally, .the two methods

will yieId-similar results when the raw score frequency diSt.ributions

are similar.

For purposes of v rLcal equating there are two important aspects of

the above paragraphs t t need to be considered, (1) Linear equating

might be expected to be.less adequate than equipercentile equating for .6.

the vertical situat'onibecausethere is less reason to expect-X and Y

to have distl'ibutio stof about the same shape. (2) A key aspect in the

definition of equivant scores given above is the requirement that-the. .

percentile ranksbequal.."...irt any given( group...% If ,this 'requirement

is not met then the conversion will not 15-Imique, More will be said

about his ,second point below but first a.few comments are offered
I

regard ng, the likely utility of thdllinear method in vertical equating.

,
THE ANCHOR TEST ,STUDY i

1

- \

i

,

Atoubtedly the larges equating study ever conducted was the

Anchor Test Study (Bianchin and Loret, 1974). (For a more complete

review of the.AnchorTest'S udy 'see Appendix A.) This study, and its

supplement equated eight widely used standardized reading tests at
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grades 4, 5, and, 6. Although the equating was done separately within
''-each grade, and thus the equating might naturally `be viewed as hori-
:=Intal, theresults are in fact quite relevant to the problem of
vertical equating. The tests being equated differed substantially ,

in'difficulty level as well as in Ontent specifications. Furthermore',

there were a variety of patterns of common versus different forms
used at grades 4, 5, and 6 which make it possible.to cotapare ,equated

scores at one'grade level with those at another.

k The various pairs of tests involved in the anchor test study
wei-e.equated by both the equipercentile,and linear methods. These,

methods were ,compared in terms of the estimated errors of equating
which were obtained by the use of McCarthy's balanced half-sample

t

replication method (1966). The equating design consisted of asset of

eight balancedllalf-samples. These half-sample replications were used

to compute the root-mean squared deviation of equivalent scores on
the anchor test for,each hialf-sample replication about Eheanchor
test equivalent scores fox the full samiole. Based on thle estimated

errors the equipercentile method was judged to be clearly Superior .

to the linear method. Furthermore, the degree of superiority was
greatest for those tests which differed.most from the anchor test in
their level of difficulty. Based on these results and logical con -
siderations-about the likelihood that distributions of forms to be
vertically equated will differ in moments higher than the second, the
equipercentile method seems preferable to the linear method in the

vertical situation. .

The Anchor.Test Studyalso providesanother_feem of evidence that
is relev t fof tbeProblem of vert equating. Two tests involved

in the st dy changed levels betwee grades 4 and 5, three tests changed
levelS between grades 5 and 6,.two tests involved a single level over
all three grades and-onestest,chang d levels at each, grade. These

diffei.ent patterns of levels make possible a variety of comparisons
of the equatings of two levels of one test to q single level of. another

test. For example, thesame level of California Achievement Tests,
C&, (CTB, McGraw-Hill, 1970) was usedat grades 4 and 5 but different
levels of the%Metropolitan Achievement Tests, MAT, (Harcourt, Brace
Jovanovich, 1970) were used at those grades. using the CAT equi-

valencies of the MAT, it is possible to' cone' i he MAT Elementary Level

Reading scores to equivalent Intermediate Level Reading scores. For

purpose? of illustration; a few scares of the CAT at grade.4 were

.selecoct and' the equivalent Elementary Level MAT scores were noted.
TheSame' CAT scores were then used at grade 5 to find the equivaleA-

Intermediate Level MAT raw scores: These scores are shown in Table 5-

1. The publisher's norms were used to convert the equated MAT Ele-
mentary and!Intermedi te raw. scores td;grade equivalent scores. The

tresulting grade aqui.V lent scores are also reported in Table 5-1. Fi-

nally, the grade equivalent score at grade 4 was subtracted from!the

corresponding scoie.ai grade 5 and the difference was recorded in the
. ,

last column of Table 5-1. . e,,,, -

3-I
.
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if the two columns of grade equivalent scores in Table 5 =1 ael com-
pared, some non-trivial lifferences in the grade equivalents cane ob-
served. The largest of the differences in corresponding grade equivalents
shown in Table 5-1 occurs for MAT raw scores that are equivalent to a
CAT raw score of 60. At this level, the grade equivalent scores are 6.6
at grade 4 and 7.4 at grade 5 for a difference of 0.8 grade equivalent
units which.ould presumably be interpreted as almost a "year's gain."
Except at the extremely high end of the distribution,'the grade equi-
Valents'tend to be larger:at grade 5 than at grade 4.

A number of other test comliinations could be used to produce tables
such as Table 5-1. For example, the grade 4 and grade 5 MAT syores
be equated through their links to the Comprehensive( Tests of Basic SkillS,
CTBS, (CTB, McGraw-Hill, 1968) rather than through the CAT; This was
dons and the results are reported in Table 5-2. As can be seen in Table
5-2, the grade equivalents at grade 5 again tend to be higher than.the
corresponding grfde equivalents at grade 4.

The results in Tables 5-1 and 5-2 su gest that changes in grade
equivalent units might .differ substantia ly depending on whether a
single level of a test or two verticall equated levels of a test are
being used in, say, a longitudinal research study. In particular,
larger gains would be expected,using the Elementary level of the MAT
at grade 4 and the IntermediaL level of the MAT at grade 5 than would
be expected if either level 2 of the CTBS or level 3 of the CAT were

used at the two grades.

In addition to 'the grade equiv ent scores, vertically equated

"standard scores" were also compare The standard scores reported
by the test publisher of the MAT test are scaled to ange from grade 1
to grade 9. At grade 4, the mean scaled score is about 66.and the
associated standard deviation is about 14. By grade 9, the mean and

standard deviation are approximately 96 and 17 respectively.

The grade 4 and grade 5, standard scores of the MAT were compared
by converting equivalent raw scores on the Elementary and Intermediate
Levels of the MAT to standard scores. When the CAT was used to define
eqiiivalent raw scores on the PAT, the results in Table 5-3 were obtained.
The results in Table 5-4 were obtained by using the CTBS to define equi-.
valent MAT raw scores for the two levels of the MAT. For all but rela-

tively high scores, the Intermediate Level MAT standard scores are some-

what higher than the "equated" Elementary Level standard scores. This

is true whether the equating is'accomplished via the CAT (Table 5-3)

or via the CTBS (Table 5-4). Furthermore, the magnitude of the difference

in standard scores is relatively large in some parts of the score dis-

tribution.

It might be noted that the 1rgest differences in standard scores

reported in Tables 5-3 and 5-4 occur at the extremes where relatively

few observations are expected. Even in the central part of the scoce-

rg.nge,, however, the differences are as large at a third of a within

grade tandard deviation. A difference as- big s a'third'of a standard

deviat on is apt to. loom large relative to the agnitudelif "effects" -

that 'are being evaluated. 'Thus, whether grade quivalent scores or other

:91
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TABLE 5-1

Teital Reading Equivalent Scores on, the MAT Elementary

and Intermediate Levels (Grade Equivalents via-CAT)

Level 3
CAT Raw
Scores .
(Grades ) & 5)

Equivalent MAT Raw Scores and
Corresponding Grade Equivalents

Elementary Level

41, (Grade 4)

Raw

Intertediate Level
(Grade 5)

GE Raw, ' GE

5-5.

Difference in
GE Scores
(Grade 5 minus!
Grade 4)

80 94 9.9 91 '9.8
70 89 8.4 76 8.4 0.0
60 84 6.6 - 63 uf:4 0.8
So 76 5.2 51 5.5 0.3
40
30

a
63
45

3.7
3.2

39

29

4.4
3.5

0.7
0.3

20 26 2.3 20 2.6 0.3
10 12 1.3 8 1.4 0.1

it
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Level 2

_r

TABLE 5-2

Total Reading Equivalent Scores on the MAT'Elementary
and Intermediate Levels (Grade Equivalents via CTBS)

Equivalent MAT Raw Scpres and_
Corresponding 'Grade Equivalents

Elementai.y LeVel Intermediate Level

5-6

Difference in
TBS Raw
Stpres

(Grades

10\

4 & 5)

(Grade 4) (Grade 5). .GE Scores
(Grade 5 minus
Grade 4)Raw .GE RawR GE

..

780 9,3, 9.8. 87 9.8 0.0
70 86 7.3 69 , 6.9 ...,,,

0.4
60 78 5.4 55 5.7 111 0.3

''.
50 68

44.3 44 4.9 0.6
40 56 3,5 35 ,4.2 0.7

30 41 2.9 28 3.5, 0.6

20 24 2.0 20 2.6 016 '

10 A 12 le 1.3 10. 1.6 u 0.3
-- ,

j

I

tlb (S

4
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TABLE .5-,3

Total Reading Equivalent Scores on the ^MAT Elementary
and" Intermediate Levels (Scared Scores* via CAT)

Level 3
,CAT Raw
Scores
(Grades 4 & 5)

Equivalent 'MAT Raw Scorallikand
Corresponding Scaled- $cofies

Elementary.Letrel Intermediate Level Diif Ler ence in
(Grade 4) .(rade 15) , S8aled Scores,, i

, (Grade 5;minus
Raw .Scaled Raw Scaled Grade 4)

80 94 119 91 117 2
70 89 ' 94 7-b. . 91 3,
60 84 , 84 63 83 1
50 76 75 51 77 2,
40 63 66 '\39 .70 4
30, 45 58 29 62 4
20 26 . 47 20 52 5
10 12 26 8 29, 3

*MAT Standard Scores

a. ,

4

(

4 '

a

.0
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TABLE 5-4

I

Total Reading Equivalent Scores on the MAT Elementary
and Intermediate Levels (Scaled Scores*,via CTBS)

. EquivLAnq, T Raw S6Rres and

.
, Correspond;,in cale Scores

Elementary Levtl Intermediate Level
-,. \s

Difference inL641 2
CTBS Raw ,, (Grade_4): ' (GiOe 5) i Scaled ScoTes .

. .

Scores
\ .

\ k I . (Grade'5 minus
(Grades 4 & 5) Raw Scaled. Raw -Scaled t :Gracie 4)

80
70

60'.
50

40

30
,

20

10'

93
86
78
68
56
41

24
12

112
88
77
69
62

56

c45
-26'

1

.

V
69

55

44

35

28 .

20 .

10

e.

105
86

'79
73 ,

67

61

'.52

34

-7
-2

2

.4

5

5

7,

8 -
f

*MAT Standard Scores

V

11,

ct,
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scaled scores are used, change observed on the same level of a test is
apt to yield different results than change observed over two vertically
qbated levels of a'test-

In.tables 57.-1 through 5 -4, except'for very high scores, there is a,
consistent tendency for the ;Ago ed" scores based on the higher level
formrto, be larger'than their count rparts based on the lower level
,form. If thii was ageneral tre , then it might be possible to compen -'-
sate fo? the tendency. Unfortunately, this trend does net hold for all
test combinations.

. .
.

. Additional compa.r.11sons of vertically equated scores based on the
results'of the Anchor Tat Study are reported in Tables 5-5 through

- -5-8. The.results in Thles 5-5 through -8 provide comparisons of
resillts'for grades 5 and 6. At those grades, the sane level (Intex=
mediate IP of'the Stanford Achievement Tests,'SAT, (Harcourt Brace,
Jovanovich, 1973) was'used while different levels of the CAT Levels-
3 and 4) *and of the CTBS (Levels 2 and 3) were used. .In Table 5r5,
selected raw 'scores on the SET are reported along with equivalent' CAT
Leve1,3 and CAT Level 4 ray ,scores and associated grade equivalent
scores'.' The differences in "equated" grade equivalent scores are also q,

reported in Table 5-3., A simile'r set of results for CT`BS Leve1.2 and
Level 3 grade equivittent scores are reported in Table, 5-7. The results
in Tables 5.-6 'and 5-8 were obtain.9d in parallel fashion except. that -,
other vertically equated scalld scores that are. reported by th "publisher

. 0 1

are used.
,.

. .

.-
that correspond to common AT scores are reported. In the middle parts
cif Cie score range, the Le

;
el 2 gtade equivalents 'areTigher,thailtheir,

Level 3 counterparts and the opposite is true at both /extremes of the
score distributWi, The malgriit'ude,,of the difference in the middle,part
of the score distribution is 0,3 or 0.4 grade equivalent units. ,Similar

l'

The results for the!CAT grade equivalent scores (Table 5-5) have
a pattern just the opposite of the one previously:encountered for the

-MAT. That 'is, except for the highest scores, the higher level form.
tends to yield lower grade equivalnt scores than the "equated" core
of the lower level form: It should also be noted that the magnitude of
the grade equivalent score. ifferdnces in Table 5-5 tend to be smaller.
for scores in the middle of the range than were the differences
Tables 5-1 or 5-2';

,

The resultS in Talile 5-6 are based on the CAT Achievement Develop-
,

ment Scale Scoreg,r.These scores are scand to span grades 1 to lyith
a range of scores from 100 to 900. The mean at grade 10 is set at 600 ,t
and the standard deviation at 190. 'At grade 4., thp mean is abOut 400
and the standard 04viation. about b5. ;Tile results in Table 5-6 ,are ,N,)
similar tb those in Table ,5 -5,. The kthievementpeVelopment Scale Scores
are low for Level 4 than for Level 3 except at the very high end of
the score distributiOn. The magnitude of the difference for .the middle -

,range of scores ,is only about an eighth of a within" grade standard
ileViation or less. :.1.

In Table 5-7, the CTBS Level 2' and Level 3 Lrade equivalent scOreg' .

%



TABLE 5-5

Total Reading Equivalent. Scores ontlie CAT
Level 3 and Level 4 ( Grade Equivalents via SAT)

Equivalent CAT Raw Scores and
corresponding Grade Equivalents

.

5-10. 1

Intermediate
II SAT Raw
Scores

(Grades 5 &

Level 3
(Grade 5)

Level 4
(Grade 6)

GO

Drifferencp in

GE Scores
(Grade,6minus
Grade 5)6) Raw GE Raw GE

110 82 12.9' 82 13.6 0.7
100 80 11.4 71 11.5 0.1
90 77 10.1 62 9.8 -0.3
80 72 8.5 55 8.5 0.0
70. 68 7.7 48 7.5 -0./
60 63 7.0 42 6.8 -0.2
50 56 6.1 . 36 5.9 -10.2

40 , 47 5.1 29 4.9 -0.2
30 35 ,3.9 22 3.5 . -0.4
'20 22' 2.4 ,16 2.2 '-0.2
10, '13 1.1 9 0.6
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TABLE 5 -6 ,

Total Readihg Equivalent Scores on the,CAT
Level 3 and Level 4 (Scaled Scot-es* via SAT)

Equivalent CAT Raw Scores and
'Corresponding Scaled Scores

/Intermediate,

II SAT Raw ,

Scores
(Grades 5 & 6)

Level 3
'(Grad,e 5)

Level 4
(Gride 6)

Difference in
Scaled-Scores
Grade 6 minus
Grade 5)Raw Scaled Raw Scaled

N.

'110 82 665 82 757 92
100 80 625" 71 i 626 1

90 77 580 . 62 566 14
80 72 530 55 : 52,8 2

70 68 503 48 - 497 6

60 . 63, 480. 42 474 6
50 56 454 36 . 450 4

40 47 424 29 415 9

30 35 380 22 364 16
20 22 318 16 306 12
10 13 259 9 232 27

*CAT Achievement Development Scale Scores

Jai

**.
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TABLE 5-7

Total Reading Equivalent Scores on thd CTBS,
Level 2 and Le4e1 3 (Gilde Equivalent via SAT)

EquiValent CTBS Raw Scores and
A Corresponding Grade Equivalehts

1r

s

5 -12

.

Intermediate, Level, 2 .432/ Level 3 bieference in
II SAT Raw (Grade,,,5) (Grade 6) . GE Scores
Scores

(-Grades 5 & 6).

110 .

100
90
80
,70 .

60

50

40
30
20
10

.Raw ' . GE . Raw GE

(Grade 6 minus
Grade 5)

. .

85 ,11.9 '84 12.9 1.0
82 11.5 75 11.5 0.0
79 9.7 :66 9.4 -0.3
,76 8.7 59 8.3 -0.4
72 /.6 52 7.3 -0.3
68 6.9 45 6.5 -0.4
62 6.0' 37 5.6 ,-0.453 5.1 30 4.7 -0.4
38 --`3,9 22 3.6 -0.3
23 - 2.7 16 -0.2
12 1.2 9 \ 2.0 0.8

t.

lw



Intermediate

II ,SAT Raw

Scores

(Grades 5 & 6),

, TAttE ,

Total Re'ading Equivalent Scores on theCTBS
Level '2 and Level 3 (Scaled.Scorest-vi,a:-SAT),

Equivalent CTBS Raw Scores and
`.Corresponding Scaled Scores

Level 2
(Grade 5)

Raw

11 85

100 82

90 ;79

80 76.

,,.70 . 72

60 68

`50 62.-

40 53

30
.

38

20 23

ip .12

Scaled

*CTBS Expanded Standard 'Scores

0

: Level 3

(Grade 6)

Raw

744 84

660, 75

612 66

N554 59,

523 52

497 45

-465 37

433 30

386 22

325 16

236 9

^,

5-13

Difference in
Scaled Scores
(Gracre 6 minus

Scaled . Grade 5)

786

641
79
543

513

483
451

370
314

.247

42 4

-19.

-33
-=11

-10

-14.

-12
-16
-11
-11

4

67.

V



4,
results' are reported in Table 5-8 using the CTBS Expanded Standard
Scores which range from 10D to 900-with a mean and standard deviation
at grade 10'of 600 and 100 respectively. The magnitude of the diTferenc
in Table 5-8 tends to be abOut one fifth of the standard deV'iation
observed, at grade 5 (which is about 72).

In summary, the results in Tables 5-1 through 5-8-raise dAbts
about the adequacy'of the vertical equating. Change observed on a
Singld level of,a 'test is apt Ao have a different meaning, than the seine

.--change. observed on vertically equated levels of-the same test: Un-
'fortunately, the direction of the difference is apparently not consistent.

THE RASCH MODEL

An important aspect of the definition-of equivalent scores that was
mentioned above is that the corresponding percentile ranks' be equal
for "any given group." With presently usedmethodsof equating, this
ideal is only roughly approximated for vertically equated test forms:
This may simply be a reflection of the difficulty of the task rather ,

than a fault of the methods: It is possible, however, that a rather*
different approach to the problem would yield better results. If

so, that would be a valuable contribution to longitudinal research
studies. An appioach that appears particularly promising for the problem
of, vertical equating is.one based on the Rasch (1960, 1966a, 19661D)-
model.

The' appeal of the Rasch model'is apparent in Wright's (1968)
description of the model, as providing "person-fiee test calibration"
and ?item-free person measurement." What is meant by person7free test
calibration is that the item parameters that` are estimated are invariant
for all groups of persons. Item -free person measurement, on the other
hand, means that once items have been calibrated that except. or errors
of measurement, the same,score would be obtained for an individual
regardless of which subset of items is used for the measurement.
These properties are pik-itsly what is needed for the vertical equating

.c,

problem. 110-

Rasch's model is a particular instance of a latent trait model and
presumably-the comments about the potential use of the model in achieving
_invariant item parameter and person score? could apply to other latent
'trait models. The primary' potential advantage of the Rasch model is
its relative simplicity in that items are-cfiaracterized by a single
paramet r. This characteristic may at the same time be the primary
potential disadvantage of the model, however,: if it proves inadequate
for ch racterizing item response data.

The Rasch model is a special case of Birnbaum's (196A) Logistic
model. Three types of logistic models might be distinguished according
to the number of parameters. Birnbaum's three-parameter model assumes
that the item charactristic curve can be specified in terms of a

location parameter, an item discrimination parameter, and a"parameter
,

allowing forsz,non-zero lower asymptote. In the two parameter, model,

it is assumed that only the location and discrimination parameters are'
required, and in*the'Rasch model, it is assumed that only the location para-

is required. Thus,a natural question that needs to be addressed if the
Rasch'model were fo be used for the problem of vertical equating is whether one

16
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or both of the other parameters are necessary,. Regardless of the number
of parameters, all three logistic models assume that a unidimensional
trait underlies the items.

Ignoring estimation problems, the three parameter logistic model-isL,,,
undoubtedly more adequate than the two parameter model or the Rasch model

.t.

with only one parameter: per it m. cent work by Lord (1975) suggests that
in the long run the three-para ter lo .stic model may prove to provide
a much improved means of vertical *equating. The main disadvantages of
the approach-are ,the' demands' for very large sample sizes to achieve
stable estimates and the considerable computing costs. The Rasch model
is much simpler computationally than the three-parameter logistic model -,-,,,.,

which would be a substantial advantage if the model provides an adequate -....,

*approximation to real sets of data.
' ----,

Follow the -notation of Wright and Panchapakesan '(1.969), the

Rasch model speci that the probability of a correct response to the ,

.th th
item by the individual is

P = Pr(a
ni

1) =
E.

ni 5

where a
ni

is the item score which takes a value of 1 if the

correct and zero otherwise, Z
n

is the ability score'for the

and E. is the item easiness. For most purposes, it is more

to deal with log ability (b
n

= log Z
n

) and log easiness (d.

which make it possible to express the log odds, Lni, in the

L
ni

= log
P
ni
1 - P

ni

= bn + di .

response is
th

n person,

convenient

= log Ei)

simple form

As previously indicated, there are three assumptions of the Rasch
model that may have questionable validity fot typical multiple choice

test items. That is, (1) the test y be multidimensional, (2) theM

items may vary in discriminating powe and (3) there may be a non-zero

probability due to guessing of getting'an'item right regardless of the

ability of the examinee. Wright (1968) acknowledged these three problems

but argues that test construction should purposefully try to minimize them.

b,#

132
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. 1

Some investigations of the ro5ustness of the Rasch model under

violations of the, assumptions of equal 'discriminating power and lower

asymptotes of zero have been conducted. Hambleton and Traub (1971)

generated item response data based on the Birnbaum three-parameter

logistic model. They4ken compared the results based on an assumed

Rasch model and an ass6e4, Birnbaum two-pa-rameter model to, those re-

sults based on the three pa meters used to generate the data._ Both

the Rasch and the two-paramete irnbaum models became noticeably less

efficient when guessing was intro uced. The two parameter model was

gthlerally more .efficient than the'Rasch model except at low ability

,levels under conditions of no guessing.

One of the potential` advantages of the Rasch or other latent trait

mods over conventional equating procedures is the possibility that

the item parameters and therefore the test calibration are invariant..

That is, the estimates of the item parameters should hot depend on the

sample used to,obtain the estimates which is what Wright (1967) refers

to as "person-free test calibration." Several studies (e.g., AndersOn,

Kearney, and Everett, 1968; Tinsley and Dawis, 1975)' have found that

the Rasch item parameter estimates have relatively good invariance for

particular sekta-of itemS. As might be expected, the invariance is

improved when consideration is limited to those items that are found -1

t. it the Rasch model within a given confidence interval.
,

Part' ularly relevant for the vertical equating problem are results

such as t reported by Wright (1968)-which compare estimates of ability

based on "h rd' and "easy" tests. This apprOach was used to investigate

the adequacy ,f $e "item-free person measurement" claim. Using test

responses of 9 students to a 48-item test, separate scores were

obtained for each lent based on the 24 easiest items and on the 24

hardest items. As w:.d be-expected, there was a substantial difference

in the mean raw number t scores Ior the easy and hard tests

(17.16 vs. 10.38 respective When estimated log ability scores were

- obtained,.the means of the two t s were luite similar"(means of 0.464

and, 0.403'on the easy and hard tests---.espectiVely). To make a comparison

tweenAhe-difference in raw score mea and .the difference in log

ability, means, the differences in means can compared to thecorres-

ponding standard deviations of the differences. or raw scores, the

mean difference is 6.78 and the standard deviation the difference

fis 3.30; thus, almost all the raw score differences are ositive. For

log ability on the other hand, the mean difference is 0.061, while the

correspondingstandard deviatldh is 0.749. The log ability differences

are_aigniflcantly greater than.zero (t = 2.54') but the magnitude of they

difference is small.

I

itely and Dawis (1974) report fairly simile sults for a'

reanalyse f Tinsley's (1972) date for 949 ubjects on 0 verbal

analogy items. gain the items were divided to easy and rd subtestd.

----"Th-e-4--Loy the dif ence in raw score on' the ea and hard su sts was

42.52
whel7eEg-rfre-corsponding value for the log bility scopes s

only 2.15.1
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tHer comparison between "easy" add "hard" tests Was made in both

the Wright (1968) and Whitely, and Dawis (1974) studies bysonverting

to "standardized difference scores.":-The standard errors associ ted with

a given individual's ability estimate on,,the had andeasy tests ale used

along with the two ability estimates to obtain a "standard#ed dkffe epee
\. ,

score", D
n

, as follows:

b - b
ne nh

n
2 2

S
ne

S
nh

where,b
nh

and brie are the log ability estimates for individual n on the
2 2

hard and easy tests respectively, and S and S are-the estimated,
0

variances of the error of measurement associated" with the individual's

log ability estimate on the hard- and easy tests., Wright and Panchapakesan

(1969) provide an algorithm for obtaining thesnecessary estimated error

variances in addition to the ability and item estimates of the Rasch
, -

model.

Using the D
n
scores shown above, Wright (1968),computed means and'

standard 'deviations and noted that if the log,ability estimates from the

hard and easy tests were, statistically equivalent, the mean should be'

zero and the standard deviation 1.0. The value actually obtained by

Wright were 0.003 and 1.014 for the mean and st dard deviation respective-

ly., This result was judged to provide strong evi ence for the equivalence

of the hard and easy tests. Although the mean of 0'.057 and the standard

deviation of 1.146 reported by Whitely and DawiS (1974) are not as good

as the values obtained by Wright, they do lend some support for the item-

free person measurement claim of the Rasch model.

The results obtained by Wright and by Whitely and Dawis are very

encouraging because of their. potential significance for the, vertical

equating problem. There remain questions, however, about the gen'eraliz-

ability,of these results,. It would be desirable to have more infor-

,ation about the consistency of the relative standing of a group of

individuals on-two equated tests that differ.substantially"in difficulty.

It would also be.desirable.to have information about the stability of

the results when estimates are obtained from one sample of examinees

and.then applied to a different ,amplebf examinees. Finally, it would

be helpful to have information on Whether bard and easy tests are uniquely

equated'lf divergent groups-of examinees,are used to perform the equating.

Analyses of some existing item response data were undertaken in an attempt,,

to provide just such information.
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iMP,IRICAL ANALYSES USING THE,RASCH MO

. ,.Procedure

Item response,dita for 1,365 students on 50 items o a retired

form of ,the tolleg,tntrance Boards Mathematics Achieveent Test Level
obtained'from the_files of the Office Of IngtructionaI'ResourCes,

Measurement and Research Division, of the Uniyersity of Illinois.*
itest was.usedas the intermediate matheptics proficiency andplacement
examination for all 1973 incoming freshmen at the University of Illinois
*ho have not previously had aatrigonometry course. Based on the 1,365

students, items 37-50.were discarded,because of possple'speededness'
or because, the proportion or'students correctly responding;to a given

item, p, was less thin 0.20 or greater than 0.80. With but a few gx-

ceptions, items 37-50,had\p Blues less than 0.15 and the ones which

did not were very close to 0 and had associated proportions omitting

equal to 0.40-or greater. the 36 items retained, the p vanes ranked
from 0.22 to 0.77 except for two'items which hpd p values of '0.82 and
0.81 with associated proportions omitting equal to 0.01 and 0.04,ret-

pectively. The p values were 'also used t.q.create two subtests.,din
"easy" testvoriNisted of the 18 items with'the\higheSt p Values and a
"difficult" toSt consisted of the 18 items with\the lowest pyaluos. In

addition to eliminating several items, any '-"Student who responded

correctly or incorrectly tosall 36 items or to the two'18 item subtests

was eliminated from all analyses. This was done bcause no informatiOn ,

can be obtained for the item -analyses from students w respond at these,

two extremes. Of the 58 S' tints eliminated; it is, t e,: possible

that a student could have a score of'0 or 18 on one of 'the ?Wq subtests

but be usefully included in the total test analyses, but fpr siMplicity,

these few students\were also eliminated.

The_complete sot 'pf group /test, combinations that were' utili4d-intis
study is summarized'in'Table 5-9. Nine sets of parameters were obtained

easy, and tpta ) and the three examinee groups used 'for estimatic5t (high,
corresponding tthe of the hree possible tests (difficult ;

low;-and-total). As' indicated in Table 5-9, these group/test

tions will be referred to by twO letters identifying the test, then the

group, Foeexample, estimates based on the difficult test and- the low

group are labelled DL. The other possible labels are specified in Table

5-9,' .

The division of items' into-easy.and difficult subtests'is in line wi1th

the subtests used by Wright (1967) and one of .the pairs of subtests in-

vestigated by Whitely and Dawis (1974) and therefore some'of the analyses

_presented here parallel their analyses. However, in addition to using' the

total sample, threebpopulations Of examinees Were formed according

to their "ability" le '61. The examinees were assigned to a,"high" group

if they ha'd 21 o-r;;ore temg correct on the total 36-item test. With

-16 or fewer items correct, examinees were assigned to a "low" grop'. The

remaining examinees who had scores between 17 and 20 were retained in

a "middle" groups This split'Assigned-490 examinees to the high group,

483 to the li, group,, and thetemaining 334 to the middle group. .

* We wish to thank Dr. David Frisbajor proViding,ua with access, to these

data.' \ 105

7
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TABLE 5-9

Design for Rasch Estimates
of Item Parameters and Ability

4

TH

.).

Group

Low

DL

'EL

i TL

Is

Total

DT

ET

TT

4
. .

t

t

5

o-
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Item parameter estimates for all -36 items Were obtained 'for, eachof.
the three groups via ,the Wright and Panchapakesan (1969) computer pro

'grim. These three sets of36-item parameter estimates were then used
as'the values of the,item parameters for the easy and difficult tests for
each of the three appropriate gtoups. For example, the 18-item,para-
meter estimates- corresponding to the 18 easiest items obtained for TT

c were used for ET and the other 18-item paraMeter estimates were used
for DT. Ability estimates were then computed by the iterative Newton-
Jtalphson procedure. given that the items were already calibrated.
However in addition to obtaining ability estimates that used previously.
calibrated ;terns, it was decided to compare these ability estimates
with ones that used.no prior information for the item parameteis. The
Pearson-product moment correlation between the two ability estimates
was 1.0 for the total, high and low groups. Because of these three per-
fect correlations, only the results based on the ability estimates ob-
tained by using the previously calibrated items are reported. The
middle group was not used to obtain estimates (other than as part of the
.total group) but it was used to,compare the equivalence of the easy and
dfffiCult tests by using the ability estimates based on the,high group,
(and also' the low group) and applying them to the middle group.

gESULTS

The results for the comparison of the difficult and easy tests_
for the total sample (DT and ET) are reported in Table 5-10. These
results parallel those reported by Wright (1968) and by Whitelytand
Dawis (1974). As would be expected, the means on the, two tests are
quite different for the number right scares, but quite similar for the
log,ability. score's. A t test for the difference .in means on= the number
right score yields a value of 65.74, while the t for the difference in
means on the'estimated log ability score is only 1.82. Fdrthermore,
the:mean and standard deviation of the "standardized difference scores"
are near 0.0 and 1.0 'respectively as would be expected for statistically
equivalent tests. Thus, based 09 the total sample the easy and diffi-
cult tests appear to be well equated on the log4ability scale.

The above comparison of easy and difficult tests warrepeatel or
'both the high and low groups. These results are reported in Table55 1

The results for the estimated log ability scores for the high and low
groups are less favorable,, than those for the total group but.ethey still

provide reasonably good' support for the claim that the scale provides
equivalent measurement. The main exceptions to the support for.equiba7
lent measurements come from two. sources: ay the relatively large
mean of the..standardized difference scores obtained for the high group,
and (2) the relatively large discrepancy between 1.0 and the standard
deviations of 0.932 and 1.115 obtained for the sta4dardized difference
scores for the high and low groups respectively. 0

Qne of the requirementsstated early in this section for equatins,
that the conversion from raw to ,scale scores be unique for different '
subpopulatDons. ',To investigate this assertion, the-independent epn-
versions for the high and low groups were compared. Ifthe log'ability
estimate associated with a particular number right Score fOr the group'

1ti
-

1



TABLE 5-10

Comparison of Difficult 'tand Easy

.rest Results for the, Total Group

r

5-21'

r--

Stmt is Ea Test 1Difficult Test '-i \Difference Standardiied
Difference

--Number Right Score

Mean 11.975 6.514 5.461
Std. Error 0.098. 0.086 \0.083
Std. Dev. 3.539 3.127 \.3.003

Estimated Log Ability

Mean
Std, Error

Std. Dev.

0.114
0.030

1.090 ,

, b 069.

0,b25.
0.903

0.045
Q.025
0.897.

-0.023
0.029

1.039

il

.1

1

1 3



TABLE 5-11

Comparison of Difficult and Easy
Test Results.,.for the High and Low Groups

,

Statistic
ti

rt

Easy Test Difficult Test /Difference 8tandardized4
Difference

i Number Right Score"(High Group) +VW

Mean 15.131 c
Std. Error 0.063
Std. Dev. 1.402

9.500

0:108
2.387

5.631
0.119

42.634

Number Right Score (Low Group)

1
Mean 8.453 3.797 - 4-.656

Std. Error 0.126' 0.072
IN

0.149,

Std. Dev. 2.773.. 1.591 3.271

EstimatedLbg Agility (High Group)

Mean . 0.995
Std. Eiror 0.030
Std. Dev. 0.662

*zzi 1.005
0.028

' 0.611

-0.010 -0.093
0.03.7 0.042
0.828 . 0.932

Estimated Log Ability (Low'Group)

'Mean' '-0,809 -0.832 0.023
Std. Error 0.034 0.029 0.045.

Std. , Dev. 0.745 0.631 . 0.978
..

-0.037.

0.051
1.115

A \

a
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is plotted against the estimate for the low group, the,points-should
fall on a straight line through the origin with a slope of one if the
conversion is unique. The results of such a plottingof ability es-
timates are given in Fiures 5-1 and 5-2 for xhe easy and cl fficult:
tests respectively.

Inspection of Figures 5-1 and 5-2 shows that with the notable
exception of the lowest scores on the easy test (Figure 5-1), the
points fall very nearly on a 45° line through the origin.. Bycfar the'

largest exception is for the lowest raw Score on the easy test (Figure
5-1) where the estimat d log ability based on the high group is much too
low compared to the es mated log ability based °lithe low group. This ex-
ception occurs at the 1 west score on' the easy test where the standard er-
ror of estimate for the igh group is very large. Thus, he exception may
not be considered very s rious. In general, the results in Fir, uses 5-1 and
5-2 are in close agreemen with the results previously, eported by Anderson,
et al (1963) and by Tinsley nd Dawis (1975).

The uniqueness of the equati
different groups may be evaluated,mo
lines obtained for different group
log ability estimates based on the ea
the solidline.shown in Figure 5 -3 for t
line for the loW group. These two lines wo

f easy arAdifficUlt tests for
directly by comparing the equating

equating of the estimated
arid difficult tests yields

high group and the dashed
d coincide if the same

conversion applied to both groups. While the lines in Figure 5-3 are ,

reasonably close, there are noticeable differences at the high ability
levels. For example, an estimated log ability of 2.0 on'the difficult
test wo$d be linearly equated to an estimated log abilit of about 2.1
on the easy test when the equating is based on the high group (solid line).
The tomparable values when linear equating is based on the low group,
however, are 2.0 and 2.5. The reason for this discrepancy can be seen
bylreferring to the values of the standard deviations reported in Table
5-11. As noted in Table 5-11, the standrd deviations of the log ability
scores are more discrepant from easy to difficult tests for the low
group than are the corresponding standard deviations for the high group.

o
',The:results discussed so` far suggest that the Rasch model provides

at least a rough equating of the two spbtests which differ markedly in
difficulty level. Since the subtests, differ more in diffilulty than
would adjaceht levels of a test to be vertically equated, it might still
be argued that the approach has potential value for the vertical equating
problem: It should, be recalled, however, that while the easy and difficult
tests may be roughly equivalent statistically, they differ substantially
in their precision for the different levels of ability.

As a final comparison of he Rasch results for ests.of different,
difficulty and groups of diffe ent ability, the rameter estimates
obtained for high and low groups were applied o'the examinees in the
middle group.' This provides an evaluation of the adequacy of the equating
of tests of different dif iculty when the estimates
group are applied to a gr up an adja ent ability

\

tained from o
[
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'The means, standard errors, and standard deviations for the middle
grcup.on the,easy and difficult tests are,reported in Table 5-12. The,

threesectioAs of Table 5=12 provide the result for number rigift scores,
estimated log ability baseeon high group ataana estimated log ability:
based on low group data. Ad-'was the case earlier-,--the means on the two
tests,are'quite different ,for the:nurilber''.-right scores (t = 41.51).

However,' the, results based on the loglahility estimates are not as
good as the - 'corresponding results reported when ability,estibates were
applied to the Same group: The value of t for OA differ,enCe between
means on the ea v and ,difficult tests is-3:38 when the ability estimates
obtained fron't e high group were applied to the middle roup. When

the ability estimates obtained from the lowgroupWere a plied to the\
middle grOup, t = 7.34. The magnitude of thetedifferen es between,
means is not trivial which leadi to the following generalization. A
middle group examinee would 4o better to take the hard test when ability
estimates are obtained from the high group, but would do betterto take
the easy test when the estimates are, obtained from the low group. This

is not a very desirable feature for two tests that are ,to be vertically
equated.. In additibn, even thoUgh the standard deviations of the standar-
dized difference, scores are near 1.0 When either type of ability esti-
mates are used, themeans do, differ significantly from 0.0 in both cases.
Clearly, the two tests.tanmot be regarded as statistically equivalent.
Therefore, 'based on the results of,obtaining ability estimates from one
group and applying these same estimates to a different group, the
easy and difficult, tests do not seem to provide equivalent measurements
whiCh are so necestary for longitudinal" research.

a

X "CONCLUSIONS

Based on ,a.logickanalySis as well as the empirical comparisons of
Scaled scores on different levels of standardized tests,, which according
to the results of the Anchor Test Study have "equivalents: raw scores, 4'
it mgst be concluded t at the vertical equating of exisqpg tests is
often less than satisfa tory. Lord (1975) has suggested that among cur-
rent methods of equatin , only those based on item characteristic
curve theory (i.e., lat nttrait models) are appropriate for the task
of vertical equating. f these, thee Rasa model is probably the Sim-
'West. 'But, our empirical results raise doubts about .the edequacy of
this model, at least, for soMe'sets of test items.

The empirical analyses involving theRasch model that are presented
above do not suppcirt the dual claims Of item-free person measurement and
person-frec test calibration. It 'may be that. the comparisons reported

above were more extreme, in, terms of the wide separation of the high and

low g cups' than are apt to be encountered when equating tests over ad-

jacen grades:',Also? bet el. results might ;be e petted by use of an ./

anchd test'procedure. T1ii s alto

poSsi th t more c refu
neces rv, i he ahick is

rted 'by

us; 'he'teSt may be o

se ction of ,items t

ch.that seems to
\GI., pp. 529-530

erly severe. It

aFifit e mbdel
e tugge

{

4 K is and

1 equating problem' using la
s*ould\inlude tests of

4

40.
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TABLE 5-12,

Comparison of Difficult and Easy
Test Results for, the Middle Group

Statistic Easy Test ' Difficult Test - Difference' Standardized
Difference

Number `Right Score

Mean 12.437' 6.063

Std, Error 0.082 0.083

Std.'Dev. 1.495 1.510

6.374
0.154

2.806

Egt/imated Log Ability

Based on High Group Data

_

Mean' -0.029 0.124 -0.154 -0.276

Std. Error '0.026 0.023 0.04f) 0.057
*x,

Std. Dev. 0.474 0.420 0.835 1.040

'.i N
4'

.
4 #

, .Estimated Lqc Ability
Based on Lga Group Data

°

A b .

se.

Mean 0.233 -0.090 0.323 0.556

*
le ..Std.Error 0.023 '0.023 0.044 0.054.

"Std. Dev. 0.448 0.415 0.804 0.978

113
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applicability of the Rasch model as well as investigations of models invol-

ving more parameters. Additional work involving overlapping groups and the

use of :Nan anchor test approach is currently underway.

0
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CHAPTER 6

APPLICATIONS O1' THE SIMPLEX MODEL IN

LONGITUDINAL STUDIES

In a_variety of situations where repeated measurements are obtained
over several points in time, the intercorrelation matrix h.4 been observed
to have particular characteristics. Typically the.correlations between
measures obtained at adjacent points in time are found to be higher
than the correlations between measures that are further apart in time.
This pattein of correlations Is also characte/istic of Guttman'Sssimplex
(1955) and a number of authors have su ggested that the limp ex is a
good model for explaining change over time (e.g., Hpphreys, 1960:1968;
Jones, 1962).

-One of the difficulties that investi ators hav,e had in evaluating
the adequacy of, the simplex model for a set of correlational data is
that the correlations are attenuated due to errors of measurement.
While the simplex model may be appropriate for error free measures, the
fit to'correlations of fallible measures maybe poor due to the errors
of measurement. liUmphreys (1960) recognized this'Iroblem ana tried
to deal with it By estimating reliability coefficients. 't.

Another difficulty in evaluating the fit of a simplex model to
a set of empiricaI4data is, of coufse, sampling error, Joreskog
(1970) developed estimation techniques for a variety of simplex models
including the model most'-commonly pogtulated for growth data which he

refers to as a quasi-Markov simplex. For example, the quasi-Markov,

simplex corresponds to the one suggested by Humphreys (1960). JOreskog's
estimation procedures (e.g.,J reskog, Gruvaeus, and van Thillo, 1979;
JOreskog and van Thillo, 1972) rov'de maximum likelihood estimates which
all w for errorstof measurement and yield large sample chi square .

tes s based on an
)

assumptionof m- ivariate

I Recently 4erts, Linn andssare og n pries ,a) have shown that the

1 simAex model prvid a a easonabl good fi the intercorrelations

of achievementtest esul report =d by Bra

Those data were obta ned,o a early basis a grades 1 through 9.

Werts, Lind and JOrelcOg ( n press, b) have 1 o used the-simplex model

Upaal3rle the intercorrelations of grades i liege over 8 semesters

that were reported by Humphreys' (1963). Th eanalysiS' confirmed

. Humphreys' assertion that the data fit a sim model. Humphreys' be-

lief that the reliabilities.of g ades acro s se esters were equal was

also1supported'by the 'analyses.

In this chapter the simplex odel wi).l Abe briefly reviewed within the

cont xt of longitudinal studies. Procedures for esti ating model pare-.
mete A as well as Correlations of gain with \status at an earlier point in

time will be dLscussed. Finally, the results of appl cation of the

simplex model to several sets of longitudinal data wi be reported.

, e :

and Hopkins (1972).

1
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THE\MODEL

The simplex model, can be represented in,several ways (see for

example Corballis, 1965, JOreskog,,1970). A conceptually appealing

form for growth data; however, is to assume that, in the absence of

errors of measurement, a score at time t + 1 is a function of the score

at time t plus an uncorrelated increment. More specifically, a person's

true score at time t + 1, Z
t
+ 1, is assumed to be

Zt + 7 btZt + (6.1)

where U
t =

is assumed to be uncorrelated with Z. "If, for -convenience,

the Z's are all standardized, then the correlation betweeil4Zt and Zt +

s simply b
t
and the correlation between Z

i
and Z. (i > j) is the

pro uct of the b
t
for t = j, j ± 1,

ould be noted that the assumption that U t + 1
arid

t
are uncorre-

.

late does n3, imply that growth is uncorrelated with previous status as

has some es been assumed. Still dealing with the error free measures,

Z
t'

the usua efinition of growth from time t to time t + 1 is,

.zt
+

where At
+ 1

is the change

At
l'

can be expressed in

follows:

t
+ A

t + 1, (6.1)

A
t +

\

1
. (i)

t
'._. II

) 1,2 + Ut
+ 1

1

rom equation L3 the covariance °I i alot. Z
.

:` I 1

\ cr(Z
t' Ilt +:1)

= - )
02\2\ (Zt),

were a2 ,( Z
t
) is.the variance of Z

'I*

0
,

Z.
r'

From equation (6.4) it is clear tha\t the correlat on between

\ I

status at time t.and groWth will be z rp only when b
t

= 1. Typicall\

bt will no equal 1.0heTice the corr laition between statu at time

t and growth will be non-zero.

,.',

er

Tath". The change in equation 6.2,

Iof the components of eq ation 6.1 il.s

1

eadit y obtained\

(6.4)

The fallible observed measures are assumed to follow a claSsical

test theory model at any point in time. Thusoan observed score' X,.

1F r



at time t may be represented by,

Xt = Zt + et
\

where e is assumed to have an expected value of zero and to be uncor

related
t
with Z at all points in time and uncorrelateci\with e at points in

time other than t. The model may be depicted by a path analysis,dia

gran as shown in Figure 6-1.

6-3

(6.5)

The usual observed gain score, Pt + l'
is simply the difference be

tween the observed, score at time t +A, and the observed score at time t.

'Thus,

Dt +1 Xt+ 1
X
t

which in terms of the t-b.le change,
`fit + l'

and errors of mea rement,is

Dt + 1 'At + I (et + 1 et)

Equations '(6.6) and (6.7) are the standard equations for a s in

score expressed respectively in terms of observed scores and in of

true gain and errors ,of measurement. As such, equations (6.6)

are independent of the assumed underlyin simplex model on the error fr

\k\ measures. The relationship of Dt + 1
to the parameters of the simplex-

.

,model be seen by substituting equation (6.3) into equation (6.7).

The m
observed sco

I venently re
'.Werts, Linn fS,,

_MATRIX FORMULATION

tlined aboue implies a particular structure'fbr the

nce andcova lances. This structure is most co'

d i matrix f xample Joreskog, 1970;

in prss,

= V X
l' X2

s in tim

row vecto f errors o easureme t, an

ZI = j Z1, Z2, Zb ]

. .

\

rof true scores.',The vecto

'41

X=

of obserte

.+1

4

,\

scores is sim

(6.8)

I
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Inprder to r,latt the observed scores to the parameters of the

simplex Model let/

U' = (U U U /)
l'-' 2' P

be a raw vector..of the 6ncorrelated
increments and let B be. a, p x p

matrix, with unities down the main diagOnal, With elements -b1, -b2,

next tothe main diagonal on the lower left hand side, and.'
P - 1 e

zeros elsewhere. For example, with p 5, the B matrix is

B =

0 0 0G 0

1

-b 1

0 -b
3

1

0

0

0

106

-
0 0 -b

4
1

...

With Oiese definittoni and equation (1) the relationship of Z and ,

U is given by

U.
.

assuming Z0 = 0. The simplex model on the error free parameters can

now 'be written as

Z = B
-1

U (6.9) .

Since B
1 Is a lower tria gular matrix with entries at illustrated belOW

for the case of p = 5;

B-1=

b

b
2

0 0

0

1 0 0

3
b2b., b3 6

b
2
b
3
b
4'

b
2
b
3
b
4

b. b 1)4 , 1
3 4 '

it can beseen that this Formulation is equivalent to- setting 'Z1 = U
1

but

except for this addition, specifiCity equations (6.1)*and'(6.9) are

-equivalent.
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The variance covariance matrix among the p observed variables, E,

can now be specified in terms of the parameters of the simplex model'and

the variances of the errors of measurement,

sAirl ,-1 ' 2

r.

E TB + 0 ,

ft.
(6.10)

f

where T is a diagonal matrix...with the variances of the U
t
as entries,

2 2, ---1, s

a (U
t
), and 0 is a dia2 gonal matrix with variances of the error's of

estimate as entries, a (et). 4

ESTIMATES

Estimates of-matrices involved in (6.10) will be denoted by-a hat

over the corresponding population matrix in (6.10) Thus,

1 1
E = B TB' + 02 (6.11)

Unfortunately, several of the elements of the three matrices on the right

hand side of (6.11) are not identified (Joreskog, 1970). To achieve

identification some additional restrictions are required. One possibility

is to arbitrarily assign fixed valdes to a2(e
1
) and a2(e ). When this

.was done by Werts, Linn, and Joreskog (in press, a) the.,parameter estimates

for the remaining elements pxovided a good fit to the observed variance

covariance matrix.

An alternative approach tg obtaining unique estimates is to add a

restriction to the model that the variances of the errors of measurement

are constant over time, That is, it-is assumed that a2(et) equals a2(e)

for all t. With this assumption, maximum likelihood estimates of the

b
ke

the a2(u
t
) and of a2 (e) may be obtained using We ACOVS program

(JOreskOg, Geuvaeus, and van Thillo, 1970). Also obtained is a chi

,s uare test.of the model based on an assumption of multivariate normality.

th this formulatidn there are p(p 1)/2 unique elements in E and 2 p

parameters to be estimated (i.e., p 1 values of the bt, p values of

a2(Ut), and one value of a2(e) ).- 'This leaves (p2 3p)/2 degrees of

freedom "for the chisquare test. 1

With large samples, the chi squire test will often be of less interest

than the magnitude of the discrepancies between the variancecovariance

_matrix implied by the parameter estimates of the model, E, and the observed

sample variancecovariance matrix, S. With variables that have arbi

trary variances as'is frequently the case in the social sciences the sari
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ple correlation matrix, R, and the corresponding matrix implied by the17

model, R, will often be of greater interest. The residual matrix is

simply the difference between the observed correlation matrix, R, and

the estimate of the observed correlation matrix, it', that is.implied,by

the model parameter estimates. With large sample sizes the residual

matrix is of special interest since the chi-square test will typically

lead to a rejection of the model. A significant chi-square is to be

expected for any a priori model such as the above given a sufficiently

large sample size. For evaluating the adequacy of the model it is im-,

portant also to consider the magnitude of the deviations from the model.

The residual matrix provides this information. If a single index of

fit is desired, the root mean square of the residuals is sometimes useful

(See for example, Linn and Werts, in press)-.

GROWTH STATISTICS

If it is decided that the fit of the data to the model is adequate,

the parameter estimates may be used to estimate a variety of statistics

that are ordinarily considered to be of interest in longitudinal studies.

For example; the estimated correlation between true change from time t

t to time t + 1 with status at time t is

A a(Zt)

p(L
t + 1'

Z
I
) = (Dt -.1) ,1

a(A
t + 1

) (6.12)

where a(A
t + 1

) is the estimated standard deviation of true change which

is g ven by

Go
+ 1

) (z

t

) a2(z
t 1

) 7 2a(Z
t

Z
t + 1

) .

The estimated.reliability Of the simple gain scores is

A potentill
1

ditfOrtal

just two p

that the ,no

, D ) = A
t t

o2(A
t
) + a2(e

t
) + a2(e

t1-1
)

vantage of formulas such as (6.12) and

ates i that they are based on a 1 dat

r, in t

LI is ad

me. This is only an adva tage,

quate for the data.

(6.13)

(6.13) ver the tra-

points rather than

however to the degree
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Estimated coVariances,or correlations betwe n true status at any two

pbints in time, say't aria.t k, may be obtainedlfrom the model parameter

estimates as follows:

.4.

a(Zt
+ k,

Z
t

=
t + k - 1

bt
+ k - 2

b
ta

2
Zt

and

p(Z
t + k,

Z
t
=bt+k-lbt+k-2'..bt a(Z

t
)/a(Z

t

The covariance of Z
t + k

and Z
t

along with the variance of Z
t

can in

turn be used to estimate the covariance-of the true change from time t to

t + k, At
+ k'

and initial status:

cot k,
Zt)

= 0(zt - a2(Zd. .

If there were no errors of measurement the measures at time t and

time t + 1 would contain all the information Lout A
t + 1.

With errors

of%Measurement,'however, the observed scores at times other than t and

t + 1 may contribute to the prediction of A
t + 1:

Thus, if there were an

interest in obtaining estimated true gains between t and t + 1 then all

the observed scores X
1, X2, : X might be used as prediCtors as isP.

implied by C ronbach and Furby (1970). and alerts, JoreskOg and Linn

(1972). Estimated covariances of obserind scores with the true change

may be obtained using the model parameters. These covariances along

with the observed score 'vkri2Ence.,,povariance matrix could then be used

to obtain tultiple regression-estimates of A
t + 1.

The resulting estimate
r-

would have to be at 'least as pad as the more natural estimate obtained

from X
t
and X

t + 1
alone. This- result is of little comforl, however,

because, as shown by Tatsuoka (1975), the Multiple regression estimate

'of A
t +.1

based X
l'

X
2'

... X
p
will be be ter than the one based on X

t
and

X
t + 1

only if the errors of measurement re correlated, which, of course,

violates the assumptions of the model.

-r
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T a b ife 6=71,

High. School Rank and Giadd Point Averages for

-Semester HS 1

. '
6-9

Eight Semesters of College

a. Intercorrelations

,

4 5 6. 7 8

HS

1

1.000

.387

2 .341 .556 1.000

3 ,278 .456 .490

4 1 :270 :.439 .445

5 .240 .399' .418

6 .256 .383

7 .240 .387 .364

8 .222 .342 .339

Semester HS 1 2

HS .000

1 .013 ,-L009

2 -.010 .001 .004

3 -.016 -.008 .007

4 -.012 -.006 -:018

5 -.012 .001 .004

6 .019 .041 -.006

7 .021 .041 .003

8 . .024 '.029 .013

,

1.000

.562 1.000

-.4446: .512

.456

.445 .442

.345 .416

b. Residuals (R-R)

3 4

1.000

.551 1 10050

.500 .544 :000

.453 '.482 .541 1400
k

5 6 8

.004

.007 009
.1

-.001 -.001 .001

-.010 -.013 .005 .000

.013 -.005 -. 06 .004 -.009

-.045 .013 - -.005 .996 -000
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Table 6-1 (Continued)

c. Parameter EStimates

Semester Beta

r

Var(u)

HS
,,,

.583

1 .642 .350

2 .939 .057

3 .836 .175

4 .958 .041

5 .894 .122

6 .940 .070

7 .926 .092

8 .904 -
. ..100

var(e) = .417

, --e

Chi-Square = 40.07 with
t
27 d.f. (p = .051)-

I

k ,1
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'EXAMPLE OF FIT, cACADEMIC ACHIEN,TEMENT+

6711

Humphreys (1968) observed that the intercorrelations of high

school grades and grades eight semesters of college follow d a

pattern typical of a simplex. Werts, Linn, and 38reskog (in ress, b)

reanalyzed Humphreys data using a simplex model and found a g od fit.
For illustrative purposes another analysis of these data, whi h are based
on a sample of approximately 1,600 students is reported belo The

model differs 'slightly from that used by Werts, Joreskog, and inn.

The specific moderused with these data is the' same as equation (6.11)

except that the procedure used the sample correlation matrix rather
dr

than a variancecovariance matrix. The restriction that the variances of

the errors of estimate are equal was used. A total of 9 variables (high

school grades plus 8 semesters of college grades) were used in the analysis.

The observed correlation matrix, R, is reported in section "a" of

Table 6-1. As can be seen there is a clear tendency for the correlations
among adjacent semesters (entries next to the main diagonal) to be higher

than the correlations between grades in more distant semesters. There are

some reversals in the pattern, but generally the correlations get smaller

as you move down a column, from right to left in a row, or from the main

diagonal to the lower left hand corner of the triangular section of the

correlation matrix shown in Table,la.

Based on, the-observation of the correlation pattern a reasonably

good fit to the simplex model might be expected. That this is the case

is supported by the chisquare value of 40.07 which with 27 degrees of

freedom has an associated p of approximately .051. While almost sig

nificant at the .05 level, with such a large sample size this would appear

to be a quite good fit. Further support for the goodness of fit can

bf obtained from an inspection of section "b" of Table 2 which lists the

residual elements (i.e., RR). None'of the 45 residuals in Table lb exceed

.05 in absolute value and the root mean square of the residuals is only

.015. Thus, these data fit the simplex model quite well even with the

added assumption that the error variances are equal at all nine observa

tion points.

The estimated correlations between tr status at'time t and true

change from tithe t to time t + 1,are reporte 'n Tble 6-2. Also

reported in Table 6-2 are the estimated relia ilitf6s f the observed

difference scores for each time interval. All of the orrelations of

true status with true change are negative. It should be noted; however,

that this result is a consequence ol two features of this particular

analysis: (1) using standardized observed scores (i.e., a correlation

rather than a variancecovariance matrix) and (2) restricting the error

;variances to'be equal. Under these conditions the estimated variances

of the true scores will be nearly equal and the value of b
t
will be less

than 1.0 which yields a negative correlation between true status and

true change (see equation 6.12),

12J
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Table 6=2

Estimated Correlations Between Trim Change with Previous

Status and Reliability of Change (Grade Data)

Correlation

of A
t + 1

4

Time Reliability
.-

with Z
t of `ChangeInterval of Change

I

1 to 2 ,.., ,42 .34
\ A

442 to 3 - ,19 .07

3 to 4 .29 .19

4 to 5 - .16 .05

5 to 6 - .22 .13

6 to '7 - .17 .08

7 to 8 - .18 .10

i to 9 '' - .23 . .11

...

,

fk

/
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The reliability of th change scores reported in Table 6-2 are all

quite low. As would be ex cted, the reliability of the change is

highest for time 1 (High S nool Rank) to time 2 (first semester college

grades) which has the love t correlation between adjacent times. The

saw tooth pattern of the r liabilities for changes from adjacent semes-

ters in college is rtelativ ly consistent with the pattern of same

versus different academic ears for the adjacent semesters. The re-

liability of change from o e semester to another tends to be slightly

lower if the two semesters Ore in the same academic year than if they

involve two academic years.` This corresponds to a tendency for grades

in adjacent semesters in a single academic year to correlate somewhat

higher than those involving different academic years. The most notable

feature of these reliabilities, however, is their extremely low

magnitude.

Anot er set of academic achievement data that illustrate the use

of the simplex model were originally reported by Bracht and Hopkins

(1972). Their data consisted of achiev,ement test scores obtained at

eight points in time (grades 1, 2, 3, 4, 5, 6, 7, and 9). The scores

were reported in grade equivalent units. Thus, the scores at least

have the superficial appearance of a common scale.

A previous attempt to fit these data to a simplex model (Werts,

Jdreskog, and Linn, in press, a) resulted in a significant chi-square

with p = .035. Due to the relatively large sample size (over 300)

the significant chi-square is probably of less interest than the magni-

tude of the residuals. Based, on the residuals and the root mean

square of the residuals, however, the fit was judged to be, reasonably

good.

Since the detailed analysis of the Bracht and Hopkins data will

be reported elsewhere (Werts, Linn, & Jbreskog, in press, a), they

will not be repeated here. One aspect of the results that stands in

sharp contrast to the above results for college, grades is worthy of

special note, however. The correlations of true status with true gain

and the reliabilities of the gains were quite different in the Bracht

and Hopkins data than they were in Humphreys' grade data.. These cor-

relations and reliabilities are*reported in Table 6-3. As can be

seen in Table 6,3, the correlations between true status and true gain

are positive in all cases which critrasts with the negative correla-

tions reported in Table 6-2. Also, the reliabilities 0,4 the differ-

ence scores reported in Table 6-3 are higher than the 4es reported

in Table 6 -2. I

1

As p eviously noted, the negatiVe correlations of Status and

change re orted in Table 6-2 are a reeultAgtf analyzing correlations

rather than covariances and of restrictions of the model. Since the

variance-covariance matrix was analyzed for the results in Table 6-3

the estimated correlations might be- either positive or negative.

The fact that hey are all positive is a result of a particular prop-

erty of the grade equivalent scale which was discussed in Chapter 4

in this report. That is, the variance of the grade equivalent scale

1

-13i
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Table 6-3

Estimated Correlations Bet een True Change vxith Previous

S.

t
tatus and Reliability of hange (,Bracht and Hopkins data)

Correlation

of A
t + 1

Reliability
TiMe

with Z
tInterval of Change of Change

2 to 3 .67

.
3 to 4 .12

4 to 5 p.59

5 to 6 .09

6 to 7 .22

.42

.56

.39

1 .51

. .43
\

..
\ t . t .

I

1,3 2

,
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increases with grade level. This.increase in variance with gride level

not only
'status an

results in positive correlations between observed initial

d obServed change but between true initial status and true

change. Whether substantive meaning should be attached to these posi-

tive correlations depends on one's view of the meaningfulness of

increased variance with grade level.

The higher reliabilities of the -change scores in Table 6-3 than

in Table 6-2 are primarily due to the higher reliabilities of'the

achievement tests than of the grades. The achievement test reliabili-

ties are in the 80's and 90's whereas the assumed common reliability

.of grades is estimated to be only .58.

At least for the two examples mentioned above, the simplex model

appears to yield estimates that fit the observed data reasonably well.

When this is true, the model has the advantage of requiring only a

single measure of a cdnstruct at each point in time. Alternative

models which are considered elsewhere in this report generally require

multiple measures at each point in time. As will be seen below, the

simplex model, at least in the simple form used to analyze the data

proves to be relatively good for some sets of longitudinal data but

relatively poor for others

ABILI X MEASURES

Although the distinction between,aptitudeand achievement is one

j. more of degree than of kind, it remains of interest to test the fit

of the simplex model for tests that are closer to-the basic aptitude

end of the continuum than the achievement end. 'Aptitude tests may

be distinguished from achievement tests primarily in terms of breadth

of relevant experience and recency of learning with measures at the

\ achievement end of the continuum being nar ower and more recent
-.L.,
uumphreys, 1973). There is no good basis f postulating that apti-

tude is fixed: Indeed, as implipd by- Anderson (1939) and more formally

specified by Humphreys (1960), "there is reason tb believe, that the

simplex'model might be quite appropriate for aptitude Measures. An

attempt was made to fit two sets of data involving ability measures at

the aptitude end of the continuum to the simplex model. The4matrices

of intercorrelations for both sets of data were obtained from

Humphreys (1967). .,- '

The first set of data involves vocabulary test scores for 278

children obtained yearly from grades 2 through 6. The incorrelations

among the vocabulary scores over these five points in time are reported

in'section "a" of Table 6-4. Inspection of the correlation matrix sug-

g sts that the.simpleX model may not be very adequate for these data.

T i is suggested by a number of instances where the correlation betAeen

s o es obtained for grades separated by more time are as high or higher

those obtained for grades that are separated by less time.

1133.
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Table 6-4

Vocabulary Scores from Grade to'Grade

(N = 278)

a. Intercorrlations

Grade
.3

. 5 6

1.00

3 .65 1.00

4 .58 .65 1.00

5 .63 .73 .72 1.00

6 .56 .68 .65 .76 1.00

b. ResidUals (R-R)

Grade 2 3 4 5 6

2 .06

3 .005 -.005

4 -.010 -.027 4;044

5 .018 .027 .001 -.039

6 -.021 .013 -.032 :024 .000

c. Parameter Estimates

Grade Beta Var(u)

2 .737

3 .876 .176-

4 .913 ..074

5 1.039 ,030

.948 .038

.Var(e) = :263-

Chi Square = 17.76 with 5df (p = .063)

134

.#1

S
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'e parameter estimates for the simplex model, re reported in

section "c" of Table 6-4 along with the chi-square t t. The residuals

(i.e., R-R) are reported in section "b" of Table 4. i 'thi- square

value is signgicant at the .01 level which suggests that 4e model

may not be adequate for these data. Given the relatively large sample '

size, however, it may still be of interest to consider the residuals.

All of the residuals are less than .05 and the root mean square of

the residuals is .023. Thus, the model provides a reasonably good

_fit to the data although the model can be confidently rejected sta-

tistically.

Odp possible difficulty with the model is this particular instance

is the hssumption that the variance of the errors of measurement are

constant across time. Judging from the correlation among adjacent

graded and the general tendency for measures to be less reliable at

the early grades than at the higher grades, one might suspect that

o
2
(e.) should be less at grades 4, 5 and 6 thah at grades 2 and '3. This

problem may contribute to the relatively large residuals in the diagona1

at grades 4 and 5.

The second set of data is based on intelligencetest scores obtained

at 10 points in time for boys at ages 8 through 17. The interval

between testing was one year:- The correlations whichere obtained from

Humphreys (1967) were based on data originally collected as part of the

Harvard Growth Study. The scores that were intercorrelated are mental

age scores. These correlations are reported in section "a" of Table 6-5.

Residuals of observed correlations minus correlations estimated froM

the, model are reported in Table 6-5 section "b", and the parameter esti-

mates and" chi-squareAeSta-re- repo-r-ted Table_&_-_a_sec,tion- "c". _ _

The chi-square is again significant. An inspection of the matrix

of residuals, however, reveals that the, it is reasonably good with

several notable exceptions. The root mean square of the residuals is

.035, the largest encountered so far. The magnitude of the root mean

square is Substantially influenced by a few large residuals. The

four largest. residuals all involve correlations with scores obtained,

at age 8. Removing the scores obtained at age 8 would greatly improve

the fit. For example, if at age 8 scores were deleted and the remaining

variables had the same values of , the root mean square residual

would be reduced to .026.

PHYSICAL MEASURES

Data were alo available for the weight and height of 275 girls

obtained on a yearly basis a4 ages 7 through 16 (Humphreys, 1967).

Uslng the results obtpined every spcond year starting at age 7 an

attempt was made t it these two Sets of data to the,simplex model.

1 3 w'



ble 6-5
i

Mental Ages of Boys at Various Chronologi al Ages

a. Intercorrqlefions

Age 8 9 10 11 12 13 14 15

8 1.000

'9 '.721 1.000

10 .712 .751 1.000

11 .747 .721 .816 1.000

12 .729 .714, .769 .859 1.900

13 .657 .696 .704, .787 .854 1.000

-14 .598 .634 .726 .745 .778 .864 _1.000

A

'15 .648 .615 .738 .810 .786 .785 ,839 1.000

16 .609 .699 .802 '.806 .770 .778 .868

17 .556 .588 .604 .736 .775' .780 .750 .778

b. Residuals (R211)

Age 8 '9 10 ' 11 12 13 14 15

8 .000

9 -.029
iP

'10 :023 -.024 .012

11 .091' -.017 .004 -.009

12 .093 -.001 -.018 1013. -.012

13 , .053 .016 -.044 '-.018 .021 -.'003

14 .010 -.028 -.003 39 -.033 .020 .010

-15 .079 -.025 .033 . 52 .002 \-.031 .013 -.004

16 .097 -.015 .012 . 64 .042 -.025 -.027, .021

,.028 -.006 -.050 . 3 .047 .023 -.b17 -.02

136

6-18

17:

1000

.848 1.000

17

-.015

.011 .000



Table 5-5 (Ciyiktinued)

c. 0 Parameter Estimates'

. V.a:r.(ti)Age Beta

.864

493

.141

. AU,

:0056

8

9 .867

10 .919

11 .952

12 .970

13 .950

14 .974

15 .966

16 .976

17 .952

Var(e) = .1 5

875

4

.:033

.054

.068

Chi-Square = 200.98 with 335 cif (p < :001)

NZ

a,

137
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The results are reported in Tables 6-6 and 6-7 for weight and height

respectively. In section "a" of each table the yntercorrelations are

,reported. The residuals are reported in section "b" and the parameter

estimates and chi-square test are reported in section "c" of each Table.

.For both weight and height the chi-square test leads to a rejec-

:tion Of'the model.. The residual matrices, however,show a relatively

good fit, for ages 7,.9, 11, and 13 with a relatively much poorer .fit

tothe.coreelations involving height or weight at age 15. The esti-

mated variance ,of the errors of measurement is zero:for both height

and weight which reflects the high reliability of these physical

mesaures but is necessarily an underestimate.

The apparently systematic nature of the residuals for the two sets

of Physicai.measures suggests that the simplex model is not adequate

for these data. 'In both cases, the fit is exceptionally good for pairs

of measures that are close in time but it becomes less and less ade-

quate for pairs of measures that are further separated in time. For

weight (Table .6-6) the average residuals for'correlations'are .098,

2,1030, .013, and point .000 for measurements separated by 3, 2, 1, and

intervening measures.respectively. A similar, though'less pro-

nounced trehd,can be seen for height (Table 6-7). This pattern of

residuals Stands in contrast to those' that were observed above for the

aptitude and achievement data. For example the averages of the

absolute values of the residuals for the vocabulary data (Table 6-4)

,were.:021,..01.5, 023, and .p14 for measures with 3, 2, 1, and 0 inter-

' vening measures respectively.

DISCdSSION

The above examples illustrate several points: (1) the simplex

model appears to p&vide a reasohably good fit to at least some sets

of academic aptitudd,and achievement data, (2)`where the data do not

fit the'model very, well elements of residual matrix may identify par-

ticular problem ar'eat, (3) for the physical measures the pattern of

the residuals suggests a general inadequacy of the one step model of

the simplex. When, the fie is judged to be adequate, the simplex

model provides a powerful tool for estimating characteristics of the lb

unobserved error free measures as well as growth statistics of interest.

N



Table 6-6

Weight of 275 Girls at Various Chronological Ages

Age 7

a. Intercorrelations

9 11 13

7 1.000
,---

9 .880 1.000

11 .810 = .906 1.000

13 .755 .840 .921 1.000

15 :744 .773 .790' .880

A
b. Residuals (R-R)

Age 7 9 11. 13

7 000 fi

9 .000 .000

11 .013 .000 .00$7-

13 .021 .006 .000 .000

15 .098 .039 .020

c. Parameter Estimates

.000

15

1.000

15.

Age Beta Var(u)

7 1.000

9 .880 .225

11 .906
A

13 .921 .151

15 .880 .225

Var(e) =..000

Chi-Square = 40.92 with 5 *Of (p C .001)

ti
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Table 6-7
. .

Standing tieight of 275.Girls at Various Chronological. Ages

a. Intexcorrlations

Age 7 ' 9 11 13 15

7 1.000

9 .980 1.000

11 .920 .954 1.000

13 .887 .909 .923 1.000

15 ..836 .844 .790 .901 1.000

A
b. Residuals (R-R)

'Age 7 9 11 13, 15

7 .000

9 .000 .000

111-.015 .000 .000
' 1

13 .024 .028 .000 .000

4

15 .058 .051 -.042' .000 .000 .

A

Age.

c. Parameter Estimates

Beta

' 1.000

l

9 .980' .039 ,

4 "

11 .954 .090

13 '.923 .148

15 .902 .188

Var(e) = .000

Chi-Square = 122.34 with 5 df (p < .001)

./

a.

4",
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CHAPTER 7

CONSTANCY OF CONSTRUCT VALIDITY OVER TIME

Whenever est scores are compared over time the extent to which they
are measures o a single common dimension is of concern. This is obvious-
ly true when t e level of the test is changed and is a prerequisite for
vertical equating. Hence, the'concernS of this section are diosely tied
to those that are discussed in the chapter of this report on vertical
equating. Even where the same form of a test is used at all times,
however, it is possible that different traits are measured by the test p-

at different points in titre. An example of such a test might be one that ' `
measures problem solving Skill at one age and memory or computational
accuracy at a later age.

The problem of deciding what is measured by an instrument is basical-
ly a problem of construct validity. An important issue for longitudinal,

studies is the extent to which measures get at the same underlying' cont.-

structs in a constanCfashion over time.. If this formulation is accurate,

then all of the proce(iVies.and considerations involved in the ongoing
task of construct validation would apply tothe concerns of longitudinal
measures of change. Thus, the variety of correlational, experimental,
and logical procedures discdssed by Cronbach (1971) are 4elevant when
attempts are made"to measure the same trait at two. or more points in

time. Bdt, the problem.is complicated by the addition of the time di-

mension.

PATTERN OF INTERCORRELATIONS

When plotting trends or calculating change scores it is'typically
assumed-that the same thing is being measured at each point in time.
From the observation that scores Change from one test administration to

next,ext, however, it is not clear whether-the people haveichanged along
a givendimension or what is measured by the test has-changed. ,

"If the correlation, between pretest and posttest is
reasonably high, we are inclined to ascribe, change
scores to changes in the individuals. But if the
correlation is low, or if the pattern of correlations
with other variables is different on the two occasions,
we may suspect that the test does not measure the same
thing on the two occasions. Once it is allowed that
the pretest and posttest measure different things, it
becomes embarrassing to talk about change (Bereiter,
1963, p. 11)."

Bereiter's comments suggest that the pattern of correlations of
the focus variable with other variables is highly relevant as evidence
that the measures are getting at the same thing. Although this conten-

tion is closely related to the approach that is discussed below, it
must be acknowledged at the outset that even the existence of identical

1 4 3
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correlations of the focus variable with a host of other variables would
not guarantee that the same thing is being measured. At best, the simi-

larity of the pattern of correlations. can improve the plausibility of
the claim that the same thing is being measured by making alternative
explanations seem less likely. The logical difficulty of concluding that
similar correlations imply measurement of thesame dimension is easily

ignored.,,

Suppose, for example, that at time 1 measure X1 correlates .35,

.15 and .18 with measures X2, X
3
and X

4
respectively. At time 2 the

correlations' of X
1
with X2, X

3
and X

4
are .51, .44 and .49 respectively.

These results might lead to a suspicion that measure X1 was measuring

somewhat different things but that is not necessarily the case. In fact,

both sets of correlations were derived from the same model with two

latent traits-.-A4-both points in time it was assumed that each X.

was a linear function of two latent traits, Z
1
and Z2, and an uncor-

relatedrelated error of measurement, ejt, where j indexes the measures and

t indexes the time of measurement.

More formally the model that was used to derive the correlations

at a particular point in time can be expressed

X =p+BZ+ e
-

(1)

where X is a column vector of observations on the p observed variables,

p is a column vector of p means, Z is a column vector of scores on the

k latent traies,.B is a p by k matrix of weights, and e is A column

vector of errors of measurement on the p measures. It is assumed that

the elements in e are mutually uncorrelated and uncorrelated with the

latent traits. The above model l.'s, of course, simply a factor model

except that the errors of measurement. would normally be replaced by

specific factors.

With the above model the variance-covariance matrix among the ob-

served variables is

2

E = B r B' + 0 (2)

where F is the variance-covariance matrix among the latent traits and

02 is a diagonal p x p matrix with the error variances in the diagonal.

4 4
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Returning to the example of correlations of X, with X2, X3 and

X
4
at time 1 and time 2, the correlations at both points in time were

generated with the same B and 02 matrices. In both cases B was

B

.7 0

.6 .4

0 .6

0 .8

and 'all the error variances were assumed to equal 1.0. At both points

in time the variance of Z
1
was also assumed io equal 1.0. Thus, at

both points in time

X
lt

= .7 Z
1
+ e

lt '

where t refers to time. Viet-is, precisely the same thing is being-
._

measured with the same degree of acturacy. Only the variance of Z
2

and

the covariance
2
were Chiaged from time 1 to time

observed measures remained the same linear function of two latent traits

plus,an uncorrelated error of measurement with the same variance and

while

Z
12

= Z
11

= Z
1

Z
22

= 2 ;
11

Without belaboring this admittedly artificial example further the
main point is simply the one stated originally. Namely, the similarity
of the pattern of correlatiOns of a measure with a variety o other mea-
sures at two points In time does not imply whether the same or ferent

things are being measured.

A similar approach to making inferencesabout the constancy of what '.-

is being measured by a variable is to compare standardized factor load-
ings. If two sets of standardized factor loadings are equal or pro-
portional it is sometimes inferred that the,variables are measuring the
same things at different points in time. Given the above arguments about
intercorrelations, it is hardly surprising that such an inference or its
converse based on non-proportional standardized loadings is not justified
(see Werts, JOreskog and Lid h, 1972, pp. 673-675).

A better approach to the problem is to compare unstandardized factor
weights. If the same latent trait is being measured then the unstandardized
factor weights should be constant assuming a linear factor model. This of

1 4.,)

4
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course is a strong assumption which may not be justified. .Within the

model, however, different weight matrices would imply that different
things are being measured. Unfortunately, the same B and r matrices
do not necessarily imply the same factors. Speaking in a slightly
different context, McCaw and JOreskog note that "...there is no mathe-

matical basis for the inference of identity of common factors across
populations, even in the case where common... [B and r] can be fitted
to all populations. It is clearly possible...that identical dispersion
matrices could be .obtained from different test batteries...(1971, p. 165)."
The same statement would apply within our context of the same population
measured at two or more points in time.

Although common B and F don't conclusively imply the identity of
common factors at different points in time it is still of value to be
able to reject the proposition that the common factors are the same
when the matrices are different. Furthermore, "...the inference of
identical factors seems reasonable if the ...[B and 11 matrices are the
same... (McCaw and JOreskog, 1971, p. 165)". Even if only the B
matrices are the same as in the example used above, the same substan-
tive interpretation seems reasonable albeit with different variances
and interrelationships among the latent variables.

CONGENERIC MEASURES OVER TIME

A relatively simple yet conceptually appealinvmodel for measures
of the same trait over time is provided by the notioft of congeneric
measures (JOreskog, 1961, 1971). Except for errors of measurement,
congeneric test's measure the same trait.and their true scores are

linearly related. As applied to the longitudinal situation.an obser-
vation on measure j at time t, X

j t
would be given by

xje = pit + bit eit

where p
jt

is the mean, b
jt

is the weight for variable j at time t, Z is

the latent variable for variable j, and e
jt

is the error of measurement''

on --Varkeble j at time t. The lack of a t suVittfipt an the Z cortesponds

to the aSl'amption that measure j measures the same trait at all pointS\,

in time. As uSilel, the errors of measurement are assumed to be mutually

uncorrelated and uncdrrelated with the latent traits.

Even with only observations on a single measure the hypotheilsthat
the measures are congeneric may be tested assuming multivariate normality

-providing observations on four or more occasions are available (JOreskog,

1968). There would still be advantages to having several sets of measures,
however, since this would provide a more powerful test of the model,
especially the assumption that the error t 's in the model are uncor-

related with all other variables. Although e above approach is

attractive with measures available a numerous points in time, by far

the most typical situation encountere in longit dinal studies is where

the same measures are obtained at only wo points n time: Also, for'

most data sets involving measures of aca mic achie ement, the simplex
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model discussed in another chapter of this report is apt to provide a

better fit. With only two points in time and with only a single measure
at each occasion, no test of the model'is possible.

With three or more measures available at two points in time, models
can be constructed to test whether each measure is congeneric over the

two time points. Th6 test would not be specific to this hypothesis

alone, however'. The model would also involve specifications of the
factor structure of the latentltrait dispersion matrix, F. Following

Joreskog (1968, 1971) the factor model for r maybe specified

r A (1) A' + T,

where A is a matrix of factor loadings for true scores, (1) is the variance-
covariance matrix among the factors underlying the true scores and T is
a diagonal matrix of uniquenesses. With this structure of F the full model

Way be expressed

E = B(A A' + T) B' +82

which may be analyzed following procedures described in JOreskog (1970).

To illustrate this approach two small examples each involving three
tests with scores at two points in time were selected.

- ,

Example 1: For the .first example data on'6,To aritnemetic tests and

an attitudinal measure were used. These measures were used for 75 chil-

dren before and after an instructional program in arithmetic. The

variance-covariance matrix for the.6 variables is reported in Table 1.

The model specified that a given measure at two points in time is
congeneric and that there is one common and three specific factors under-

lying the three true scores. Thus,'with.the tests ordered tests 1,
2, and 3 at time 1 then tests 1, 2, and 3 at time 2 as they are for the
variance-covariance matrix in Table 1, the model specifies that the
B matrix will have four zeros and two values to be estimated in each

" column% The pattern is

B =

* 0 0

0 * 0

0 0

* 0 0

0 * 0

-0 0

where the asterisks are the values to be estimated.
\

%

0

14/
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WABLE 7-1

Variance-Covariance Matrix

7 -6

(Example 11..= 75)

Variabl 1 2 3
4

1 j2 3

Time 1 1 1 2 2 2

1. Arith. 1 1 118.50

2. Arith. 2 1 45.33 46.68

3. Attitude 1 257.46 135.38 2555.80 P

1. Arith. 1 2 73.66 39.82 239.62 94.00

-2. -terith. 2 2 '1"---\ 56.99 39.40 149.62 48.29 58.17

3. Attitude 2 238.21 126.62 1166.40 159.15 152.25 1683.00

.g



7-7

The A matrix has three rows and one column with all entries free,

(I) is just a scaler of 1.0, T is a 3 x 3 diagonal matrix with all diagonal

entries free. The maximum likelihood solution for the variance-covariance

matrix ofexample 1 is presented in Table 2.

All three variables have substantial weights on the general factor.

For each variable the weights in B are reasonably similar at, the two

points in time. The attitude measure has an apparently large variance

of the errors of measurement but the true score variance is also very'

large on this variable in comparison to the other two variables. The

critical question regarding the above results is the adequacy of the

model for the data. This is answered in two ways: by a chi-sqdare

test.of fit and by an inspection of the matrix of residuals. The chi-

square for these data is 5.95 with 3 degrees of freedom which is,not

significant'at the .10 level.

The matrix of residuals', i.e., the observed variance-covariance
matrix minus the variance-covariance matrix estimated by the model As
reported in Table 3. The residuals shown in'TAle 3 are generally small
compared to the corresponding elements 41k Tablej. The largest residual
not only in abAolute magniude but as a ratio of -"the corresponding ,

ment in Table 1 is for the 6variance of variable 1, time 2 with variable
3, t 2. All of the larger residuals involve variable 3 which may not
be rpr i given that variable 3 is an attitude measure whereas the
other wo are chievement tests. e.r

Although the bove'model provides a reasonably satisfactory fit it

is not a very severe test of the hypothesis that each measure measures the

same thing at both points in time. A total f 18 paramete'rs (6 in B,

6 in 62 , 3 in A, and 3 in Y) were estimated frpm a total of only 21 dis-

tinct elements in the observed variancercovariance matrix. A more severe

test would be provided with more measures, more points in time or fewer

parameters. One way to reduce the number of parameters is to make the

model more restrictive. For example, the variance of the errors of

measurement,of a given measure might be assumed to be equal at both points

in time. This would,reduce the number of parameters to be estimated in

62 from 6 to 3 and require a total of' 15, rather than.18 parameters to be

estimated.

With the equal error variance rwraint added, the parameter esti-
mates rworted in Table 4 were obtained for the variance-covariance matrix



TABLE 7-2

Maximum Likelihood Solution (Example 1)

4es

t

B Matrix

Diagonal
Entries

in 6
2

1 2 3

1 1 3.30 .0* .0 5.50

2 1 .0 1.51 .0 3.82 r

3 1 .0 .0 6.32 34.71

k 2 2. "76 .b 5.69

2 2 .0 1.86 .0 3.12

3 2 .0 .0 5.46 26.00

1

2

'3

*Fixed by hypothesis

-Entries,

A Matrix in T

(2:85

3.27 _1.82

4.38 3.82

10
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TABLg 7-3 .

f. 4

Residual Matrix (Example 1)

_11 -1 .00

1 -1:16

3 1 -2.70

.1 2 - .07

2 2 - .15

3 2 13.65\

7

-1.69 .01
(

- .99 22.29 .00

.00, -18.79 ' .56 .00

8.34 .01 -28:45 6.88 .00

151
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TABLE 7-4

Maximum Likelihood Solution With Constant

Error Variances for Each Measure (Example 1)

1

2

3

1

2

3

t

B Matrix Entries
-2

in 81 2 3

'1 2.54 .0* .0 5.59**

1 .0 1.97 .0 3.55

1 .0 .0 .548 29.59

2 2.16 .0 .0 5.59

2 .0 2.31 .0 3.55

, 2 .0 .0 4.15 29.59

P
Entries

A Matrix in T

1 3.68 .00

2 2.57 1.42

3 5.20 4.82

* Fixed by hypothesis

** The pairs of elements 1 and 4, land 5, and 3 and 6
are restrained to be equal.



in Table 1. The solution hown in Table 4 yields a Chi-square of 8.07

with 6 degrees of freedo which is not significant at the .20 -rea.
While the resulting residuals are slightly larger than those shown in
Table 3, the, model even with the restriction of equal error 'variarice

for a given/Measure at the two points in time appears reasonable.

A still more restrictive model for the above data is provided by
requiring that not only the error variances but the entries in B be the
same for a given measure at'the two points in time. This is equivalent

to the hypothesis that each measure at time 2 is parallel to the corr
pending measure at time 1 except for a possible additive constant om

time 1 to time 2. This is a very restrictive model for longitud al

measures. It says, in.effect, that the only two possible diff,arences

between time 2 and time 1 measures are different means and different
errors of measurement. The underlying true scores are identcal within
an additive 'constant and'the errors of measurement are uncorrelated and
have equal variances. With these additional restrictions the estimates
reported in Table 5 were obtained.

The chi '-square for the rather highly restricted solution shown in
Table 5 is 16.33 which.with 9 degrees of freedom (21 separate elements
in the variance-covariance matrix minus 12 parameters to be estimated)
has an associated p value of .06. Although not significant, this increase
in the chi-square suggests that the model may be too restrictive. A

test'of the additional restriction of equal regression weights is
provided by the difference in the chi-squares associated with the solu-
tions in Tables 4 and 5. This difference is 8.26 and with 3 degrees of

freedom is significant at. the .05 level. This,suggests that the restric-

tion of equal entries in B is not reasonable. j

Example 2: As a second example, data available on three arithmetic
subtests (subtraction, multiplication, and division) at two points in

time were used. The variance-covariance matrix for a sample of 47 fourth

grade students on these six variables is shown in Table 6. The maximum

likelihood solution for the model specifying congeneric measures over
time and one factor underlying the true scores is Shown in Table. 7. The

chi-square test of the model is 11.52 which witht3 degrees of freedom is
significant at the .01 level. Thus, in contrast to the results for example

1, the least restrictive model can be confidently rejected far the data in

example

Part of the problem with the model may be suggested by the entries
in the residual matrix which is shown in Table 8. Three of the four largest

residuals all involve the multiplication test. It may be that the hypothe-

sis that a test is congeneric over time is least reasonable for the mul-

tiplication test.

LESS RESTRICTIVE MODELS

As was previously indicated, the hypothesis of congeneric measures

over time may be much too restrictive in most longitudinal situations. The

notion of growth does not normally involve the strong assuption that the

true score at,time t is merely a linear function of the true score at

15.3



TABLE 7-5

Maximum Likelihood Solution wirh--Constant Error Variance

and Regression of Observed on True Score for Each Measure

(Example 1)

)

ry

B Matrix Entries.

t 2
1 2 i 3 in 6 .

1 1 2.67* .0** .0 5.69*

2 1 .0 ' 2.47 .0 3.61

3 1 .0 .0 5.79 30.87

1 2 2.6-7 .0 .0 5.69

,Pc-- 2 .0 2.47 .0 '3.61

3 2 .0 .0 5.79 30.87

A Matrix

1 3.22

3

Ents
in T

.00

2.24 1.20

4.46 3.85

7-12

* Pairs of entries for a given measure are restrained
to be equal

_ -

** Fixed by hypothesis-

15I
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/TABLE 7-6
4

Variance-Covariance Matrix

.

1
.

(Example 2, N = 47)

Variable 1 2 3 1

Time 1 1 1 2

1 Subtraction 1 2.35

2 Multiplication 1 1.24 2.54

3 Division 1 .63,
.
.58 2.47

1 Subtraction 2 , .70 . .39 .10 1.56

2 Multiplication 2 .96 .41 .71 .93

3 Division 2 1.52 ,,.95 1.02 1.10

ie.

2 3

-'
2 *2

J

2.52

1.83 3.37

...

I



so

3

1

2

3

TABLE

Maximum Likelihood"Solution (Example 2).

B Matrix Entries

2 3 in 02

1 .92 .0* .0 1.17

1 .0 .59 .0 1.46

-1 .0 .0 .46 1.45

2 .67 .0 .0 1.02

2 .0 1.01 .0 1.12

2 .0 .0 - 1.31 .70

1

I

2

A Matrix

1

Entros

in T

1.07

:141

1.20

.00

:00

.50.

* Fixed by hypothesis
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%s

j 1

t 1....

1 1 .00

2 1 .60

3 1 .08

1 2 -.01

2 --2

3 2 -.03

TABLE 7 -8

Residual Matrix (Example< 2)

2 3. 1 2

1 1 2 2 ----- 2

.00

.22 .00

-.08 -.30. .00

-.32 .09' .12 .00

-.07 .00 -.02 .06 .00

7

1;i
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time t 1. Rather, we would normally like to assume that the rank order

of indOi.dualS along a given dimension may change over time. Onte the

rank order 'on the underlying dimension is allowed to change, however,
there .is a difficulty in establishing whether it is the trait being

measured or the people that aTe changing. Thus, the fundamental problem

with which tie started this chapter still remains.
-____---

,LEapomplete model can be specified it may sometimes be tested
within the context of the general procedures for the analysis of covar

iance structures (Joreskog, 1970). In most instances, the theory is

apt to be lacking to make this more than an approach to testing the

reasonableness of a variety of possibilities. With three or more oc

casions and several measures the procedures described by Joreskog (1969)

for factoring a multitestmultioccasion matrix should be of value.
WheiClsecstricted to two points in time as is typically the case, however,
strong assumptions about the causal structure of the unmeasured variables

are apt to be needed.

An approach to the problem involving multiple measures of a trait
at time 1 and again at time 2 as well as multiple measures of a second

variable that is thought to be a determinant of growth is discussed by

Werts, et al. (1972). While potentially useful, their approach makes .

heavy practical demands for a closed model'with all intercorrelated
determinates for final status on the trait of interest included. It

also requires multiple measures (at least three) of each trait.

Several attempts were made to illustrate the approach described

in Werts, et al. using Project TALENT results reported by Shaycoft

(1967). We were not successful, however, in finding examples for which

the fit was enough to'provide1useful illustrations of the approach.

This failure,i pro gb. due, in large part, to the artificial nature of

the examples that were att jted. The Project TALENT data collection

was not designed with suchaid` model in mind and the'needed

multimethod approach to the measurement of each trait was not used. As.

a result the identification of "methods" factors and of a causal model

for analysis were too crude to be successful.

CONCLUSIONS

The problem of deciding if it is the people or the nature of the

dimension that is changing is basically a problem pf construct validity.

As such, it is an unending process for which theory, logical analysis

and a variety of empirical procedures are relevant. Assuming linearity,

the procedures for the analysis of covariance structures (JOreskog, 1'970)

provide a potentjally powerful analytical tool in this effort. But,

there are two major obstacles to the application of this approach.

These are the lack of theory to guide the testing of specific hypotheses

and the requirement of multiple measures for all but the simplest of

hyPotheses.. , t
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Chapter 8

TIME-SERIES-ANALYSIS APPLIED TO LONGITUDINAL STUDIES

INTRODUCTION

.*
Time-series analysis refers to the body of knowledge and

techniques that deals with the fitting of stochastic models to a series

of observations made at successive, equally spaced time points. It

thus differs from techniques for fitting deterministic models such as

polynominal and multiple'regussion equations. Developed-primarily in

the context of industrial engineering; economics, add business manage-

went, its primary purpose heretofore has been forecast and dpntrol.

SNX \\

The application of time-series analysis to behavioral and`

(Box and Tiao, 1965; Box and Jenkins, 1970; Nelson, 1973.)

social sciences in general, and to educational and psychological re-

search in particular, has been pioneered by Campbell (1969) and Glass,

Willson and Gottman (1975), among others. The main objective of Elliase

works has been the application of the technique to "interrupted time-

Series experiments," studies in which series of observations both

before and after the introduction of some experimental intervention are

involved, and whose aim is to examine the nature and significance of

the effects of the intervention, if any.

The purpose\of this chapter are threefOld._ First, to present

a more elementary,exposition oftheApethodology of tide- series alysis

than is available in the literature to date; second, to point out that,

as currently used, the method does.not takeiro account the longitu-

dinal nature of the data, but rather treats th4mias sequential

1i0
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cross-sectional data; third, to suggest some modifications to make the

technique specifically applicable to genuine longitudinal studies.

THE BASIC MODELS

Within the rubric of linear models, the-most general stochastic'

model for discrete timerseries obseryations is one which postulates

N.
that the observe t time t is expressible as a linear combination

of an overall "leve lia.rameter L and random disturbances (or white

jnoise) at time t and all prior ti e points,' a
t'

a
x-1,

a
t-2

... . That

,
6 -

is, \

[1] L + a
t
+

1
a
t-1

+
2
a
t-2

+

..., >

which is called the general discrete linea stochastic process m del, or

r
A

the "linear filter" model for short. order to achieve anything re-

seMbling tractability, we must assume that the random disturbances a
t

are identically and independently distributed randout variables with

mean 0 and variance aa. ror inferential purpose we further assume

that the common diStribut

a
t

IND (0,a
2
)

n is normal; i e.,

At first glance it may seem-that for any stochastic process

expressible by Eq.'[1], it should, follow that

B(z
t
) = L + E(a

t
+q)

1
a
t -1

+q)
2
a
t-i

= L + E(at) + E(a( ) +
2
E(a

t-2
) +

1 t-1

= L + 0 + 0 + 0 +

= L.

16i
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This fallacious, however, in that the transition from the first to

the second step is not valid unless the infinite series a
t
+

1
a
t-i

+

tp2at-2 + ... is convergent. The necessary and sufficient condition for
co

this to be the case is that the coefficient'series, y 4). (where

i=0
- 4

tP0 = 1), itself be convergent. If, and only if, thiF is true,' we call

assert that E(zt) = L for all t. Thus, as a first principle, we have:

[2] E(zt) = L, for all t, ifi = K < 00.

i=0

When this condition holds, Process [1] is said to be stationary through

the second moments, for as shall immediatelx.see, the condition also

(
/ .

impli that the variance Var(
t
) nd covariances between staggered

i

z
t

independentndependent of t. Together 1.4th the normality assumption for

the distiilbution of at, stationarity through the second moments assures

con?plete stationarity--i.e., that the probability distribution ot

is invariant with, respect to t. Intuitively, a stationary process is

one in which the successive observations, although _ "meandering" in time

always centers around fixed mean, E(zt) = L.

Let us now verify the above-assertion that the condition

stipulated in [2] is sufficient also to guarantee that Var(t ) exists

and is independent of t.

Var(zt) = E(zt -L).2

= E(a -1-tP a +Oa +...)
2

t 1 t-1 2 t-2

2 2 2 2
= E(a

t
+tP

1
at-1 -1-tp

2a t-2+...)

+ 2E(P a a +tp a
t4-

+...
1 t t-1 t ?

41111)2at-lat-24-...)

1U2
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'.

'since E(a
t
a ') = 0 for t A t

/

because the a
t
are assumed to be in epend-

t
%. co

ently distributed. Obvious13,k, the convergence of 1 11)1. assures

co
J.L'IP._

r 2
. ,

LA) also to be convergent.. We have thcp shot that

i=y-i

2 r
i3] Var(z ) = a L tp. for all t, iff 2 'pi =-1( <

t ai=0 1' i=0

Similarly, it can be shown that

co 2 CO

CO CO

r
[4] Cov(z ) = a 2. q).1). iff y 1p. K < co.

t+j 1 +3 . r.ai0 =0

In the literature time- series analysis, Var(zt
) for station-

ary processes is denoted by y
o,,,

and Cov(z
t
,z
t-

.) by y., the latter being'..3 .. 3
called the autocovariance of la?-i.

A simple example of a stationary process is one for which the

coefficients 11)1. in [1] a e given by

4i = 4i, where

In this case,

and

co,

2

L
i=0 1 = (I)

2

co

th th . = + (04-2+ e" + --1C4j
iYi+3

(to
2'

i=0

Hence, Eqs. [3] -and [4] specialize to.

(3 *]

and

Yo = 62/(1-4)2)

1 6 3
ti
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Moving-Averag (f Processes
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kven simpler way in which Zq. [1] can represent a station-

ary process is when the coefficients V
i
are all zero for i > q. The

series, a
t
+

1
a
t-1

+ tp
2
a
t-2

... then terminates with term4
q
at

q

anddlecoefficientseriesltp.=1
i
necessarily converges. The

i=0 1 i=0

resulting process,
q.

a
t

= L + at + IP
1 t
a'

/

..-1

+ tp
2
a
t-

t7:.. 4.:1)
q t-q

is called a moving-average proc s of order q, abbreviated MA(q),I

1The phrase moving-sverage" does notmean that the average of z
t

II moves" or varies with t--otherwise the process would be non-stationary.

It simply means that zt - L is a weighted composite of the set of dis-

.
i.e.

turbances through q time points back, which of
11PCourse moves with t. For

expaple,'with q = 2, z5 - L is a weig4ed composite of a5, a4

z
10

- L is a weighted composite of a10, a
9
and a

8
. It is the set o

a's of which z
t

is a weighted composite that moves with t. ' Note also

. ,

that the weighted,composite, at + lat_1 + +
q
a
t-q'

is not really

a weighted average, since the coefficient 1,
1

,

2'
do not, in

, general, suM to unity jas Box and Jenkins"(1970, p. 10) points out-].

For historical reasons, the phrase "moving-average" is retained even

though it is, strictly speaking, a misnomer

161
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4

For purely historiCal reasons again, the coefficients cPi

(in) are replaced by -8i, so the conventional equation for an MA(q)

process is

[6] zt = L + at -°81at-1 82at-2 - 8
q
a
t-q

Thus, the simplest case (which turns out to be adequate for many situa-

tions) is written as

= L + a
t

-

FoIMA follows from Eqs. [3] and [4] that
V

'
[8]

and

[9] / Yl"= cra2(:01)

while
1

[10] .--x(1 for j ,5 1.Yj
/'

. /

In addition to the variance and autocovariances of various

,

* ldgs, another impyttant parameter, for stationary time-series models is ,

f.".....)

.

. -

the autocorrelation of lag j. Its,importarice lies in the fact that its
/

sample counterpart is one of the main.statistics used for identifying
4

the apptopriate model for a given series f observed data, as we shall

seelater-TheautocorrelationolagLdenotedbY.
p.., is compute?

in the usual way, as .

pj
VVar(z

t
) dr(z )

t+j

Cov(z ,z I
t t+i

C3
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But, since Cov(zt,zt+j) = y. and Var(zt) = Var(z_
c+

.) =
o'

p. may be

expressed as

[111 P.
3

= I.3 /1
o

Thus, for MA(1) we have

2
[12] p= -8a (i+e

1)
and, . = for j > 1.

1 PJ

In general, for MA(q) the autocorrelatioris of lags less than

or equal to q ar non-zero, and those of lags greater than (fare zero.

For instance, for MA(2) we have Eqs. [3] and [4]

2 2
y =

a
(1+81+822 )

y
1 a

2
(-0

1 1
+8-8

2
)

=
a

2
(-e2)

Hence,

[13) p =. (-e
1
+0

1
e
2
)/(1+0

2
i-e

22
)

P2 =

p = 0

-8
2
/(1+0

2

1
+8

2

for j > 2.

Autoregressive Processes .

- - 4 ,

0

Another important.class of processes is the autoregressive

process (AR). The equation for AR. is obtained by going back to the

general linear,filter of Eq..[1] and rewriting the right-hand in

B`

terms of the current disturbance and all past observations. To do so,

we first transpose the terms in Eq. [1] to get:

6,3

,
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a
t
= zt - L IP

1
a
t-1

- tp
2
a
t-2

-

and, noting that this holds for any time point, we, have, e.g. for t-1,

= z - 11) IP a -a
t-1 t-1 ' 1

a -
t-2

Substituting this In Eq. (1] in its original form, we get

z
t
= L + at + 4P(z -1,4 a -11) aN ) iP2at-2t 1 t-1 1 t-2 2 J

= L(141) 11)12t_1 at +

from which a
t-1

has b

t-2 + (IP3-111P2)a-3

---

,-- ,

elimina ed. Similarly, we may suce- essively

i

and ultimately get an equation of the fcirm

J //,

eliminate at_2, at:3:.

[I41 t
t

= +-ff
I
z
t-1

7
t-2

+ + a
t'

where the coefficients are functions,of the IP 's and the constant

e is a function of L and the The nate '"autoregressive Adel"
-

comes from the fact' that Eq. [14] resembles a multiple regretsion equa-

tion with-z
t

as the criterion variable, the past obseraitions z
tL-1'

. zt_2 ... as predictors, and at as the error of estiu ate.

Of course the seriessu
1
z
t -1

'+It
2
z
t -2

..must converge be-

fore [14) has any chance of representing a sta ionary process. But,

as we shall see below, such convergence is only a necessary but in-

sufficient condition for stationaity. As before, the simplest way to '

assure convergdhce of the series is to require ,that all the coefficients

beyond the pth , say, shall vanish: When this is the case, we have an

.

autoregressive process of order p,'symbolized'AR(p). 'Again for

,
. .

historical' reasons, the coef'ficients 7. are rewritten as (Pi
'
and the

conventional equation for AR(p)
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[15] z
t
= + z

t-1
+ (1)

2
z
t-2

+ ct)

p
z
t-p

+ a
t

.

For the simplest case, AR(1), we hav

[16] z
t
= 8 + 4)

1
z
t-1

+ at.

It may be t?empti

of this equation o get..

E(zt) =
(1)1E(zt

o take the expected values of both sides

and, ,letting E(zt_i) = obtain

E(zt) = 8/(1-01).

However, this already assumes the process to be stationary [when we

put E(zt_i) = E(zt)], wpereas in fact it may not be. To see why Eq.

[16] does not automatically represent a stationary process despite its

having only two variable terms on the right, we must convert the equa-

tion back to MA.form--i.e.,.a linear combination of present and past

disturbances--for w h we 'already know the condition for stationarity.

This i dome by using [16] with t replaced by' t-1 to dxpress

z
t-1

in terms of z
t-2

and a
t-1,

as
o

whence ,

t-1
= 8 + izt

-2
+ p

t-1

z = (84. Z a
t t1 1 t-24,t-1 //

= .(1-1-41) 8- + (1)1 z
t-2

+ a
t

± 4) ;
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then z
t-2

is expressed in terms of z
t-3

and a
t-2'

and so forth. Con-

tinuing in, this Vein, we eventually get

2

z
t

= f3(1+4)- 4-0
2
+.,.) + a

t
+ (15

1
a
t-1

f+ ()

1
a
t-2

+ .

-Thus, both the series in the a
t
`s and the series forming the multiplier

of 8. converge if and only if ly < 1. Once this condition is met,

this equation is seen to be equivalent to

\,>

[17] z -
t 1 -

+ thia
1 t-i'

1 i=0

which is precisely the process we referred to earlier as an example of

a moving-average process of infinite order which nevertheless is

stationary; 13/(1-y here plays the role of L. Thus, an AR(1) process

is, under the conditiOn states], equivalent to an MA process of infinite

order. We thus conclude that, if and only if 14;111 < 1, Eq. [16] repre;-

sents a stationary process with

[18] E(zt) = 8/0(1-4)1),

and, from Eqs. [3*] and [4*],

y. = a
2
(P,j.

1
/(1-0

2
) (j ='0,1,2,...).

a

Consequently, the autocorrelation of lag j is

[19] P. = Y. /YO = 1.

Unlike For a MA process, the autocorrelation does not Suddenly vanish

after a certain lag, but steadily decreases exponentially.

The equation for AR(1) is often written in deviation-score

form, thus: let

1v :)
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z
t

E(z
t

. a - = z
tt 1 - gt>

1

Then, from Eq. [16],

z
t

=
1
z
t-1

+a
t
) -

1 -
1

. S 1 -
1

+
1
z
t-1

+ a
t

= ct,
1
(z

1 - 4)1
) + a

t

ti
= cp

1
z
t-1

+ a
t

Thus, the equation for AR(1) in deviation-score form,

[20] z
t

= (1)

1
z
t-1

+ a
t

is the same as [16] except for the absence of the constant term B.

AR Processes of Order Two and Higher. The model equation

for AR(2) is

[21) z
t

= B + 41 zt-1
(1)2 zt-2 +

a t

Once it is ascertained that'the Stationarity condition (to be specified

later) is satisfied, we may get E(zt) by taking the expected values of

both sides of [21), letting E(zt_i) E zt- 2) =
E(zt) and solving to

obtain

[2,2] , = B/(1-(1)1-42).

.To compute the variance and autocovariances it is convenient

to use the deviation-score form of Eq [21]:

[23] z
t
=

1
z
t-1

+ z
t-2

+ a
t'

where~ z
t
= z

t
- 6/(1-4)

1
-4)

2
).
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rt,2
rt,

Yo = E(zt) Etzt(q)lzt-1
(I)

2
z
t-2

+a
t
)]

= 1E(zczt_i) + cp2E(ztzt + E(z a )
t t

2
= CY (I) Y a

1 2 2 a

The last term in the last, step obtains because, from Eq. (23],

E(z tat) = E[(¢ z +4$ z +a'.)a
1 t-1 2 t-2 t t

(z
t-la t

) + (f)2 E(z
t-2

at) + E(at) ,
-

%;

and obs'ervations prior to time t one, of course, independent of the

8-12

disturbance a at time t. Similarly,

and,

[24]

1
1
= E (Z t-1) = E{(4) 2 )1 1

1 t-1
)

2 t-2
+a

t t-1

4)] Yo 4)2Y1'

Y2'
= E ( ) = y +

t-2 - fly 2 o

We thus have the set of equations

2

10 7'4111 (/),2Y2 aa

Y
1

= (I) 1
Y °

(I)

2
Y
1

Y
2

' ci)1Y1 -Wci)
2 o..

a

or, if we are interested only in the autocorrelatiorAtote may divide

both sides of the,last two equations of this set by yo' to obtain

171
it
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These are called the Yule-Walker equations.

Autocorrelations of iag greater than 2 may be computed from

the recursion relation

')

[26] P.
3

' (I)1 3
P. -1

+-
2 3O.

P.-2
(j > 2),

which results from

yj z
t

r,
E( z

t -3
.)

E(((Plzt-l+C52zt-2+at)zt-j]

= (1) Y. +6 Y
.2 3.-.1 J-1 2

Note, that Eq. [26] is formally the same as [23] without the disturbance

term at

For higher-order autoreg/vsssive prRcesses, say AR(p), the model

'equation, in deviation-score form, is

;

.

,k,
q.,

tp[27], z
t

= 0
1
z
t-1

+ 0
2
z
t-2

+ ... + 0
p
z + a

t

where zt = zt ).

The Yule- Walker equations for computing pl, p2 pp are p in number,

and may best be displayed in matrix notation. They are:

P1 1
P1

P
2 Pp-1 (Pi

P2
1

P1
...[-p'

p-2 Cb2

[28]
p2 p 1

p1p -3

Pp p
p-1 pp-2

p
p-3

1

172
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The matrix on the right-hand side is -symmetric with (i,j)- and (j,i)-

elements equal to

reads

Thus, for instance, whrp = 5, Eq. [28]

pl.
..'

1 p
1

p
3 (1)1

P2
p
1

,1 p
1

p
2 -(1)2

P
3 =

p
2

p
1

1 p
1 p2

(1)3

P
4 p3 p2 p1

1 p1
(1)

4

4
.

P 5
. . P4--P3

P1 1 (Pc
_,

Autocorrelations of lag greater than p are given by the re-

_

cursion relation

[29] P = Sto
j 1

P. -1
+ >

i.e., an equation identical in form to the model equation [27] itself,

except for the absence of a
t

.

The expected value of z
t

following a'stationary AR(p) process

is given by a simple extension of Eqs. [18] and [22], viz.:

[30] E(zt) =

as was alread anticipated when the dd/iation-score model equation was

written.

Reciprocity between AR and MA Processes. What 116\saw in

connection with the AR(1) model above exemplifies an interesting'

reciproci y that exists between autoregressive and moving-average

proce\ sses: A finite autoregressive process is equivalent to an in-

finite mqvi g-average process, while a finite moving-average process
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.is equivalent to an infinite autoregressive process. However, there

is a slight /asymmetry in the reciprocal relation.

/

Even for the simplest, finite autoregressive process AR(1) .

to be stationary, it was seen that (1)1 had to be less than one in

absolute value. On the other hand, MA(1) (or any finite moving-average

pro ess, for that matter) is automatically stationary, as we saw earlier.

Neve theless, there is a sense.in which the Coefficient -0
1

in equation

[71 or MA(1) needs to satisfy 10
1

1
< l_in order for the process to be

"reasonable:" To show this, let usorewrite the equation for MA(1) i

autoregressive form.

From 'q. [7], with t replaced by t-1, we get

4

a
t-1

= z
t-1

L + 8 a
l t-2'

which, substituted back in [7] yields

zt = L + at e (z L+ 0 a )

t 1 t-1 \ 1 t-2

= L(1+91) - 81z + a
t
- 62a

1 t-2'

Continuing in this manner, wa eventually get

2 3 2

z
t
= e

1
z
t-1

e
1
z
t-2

- e
1
z
t-3

- + L(1-1-8
1
+0

1
+...) + a

t
.

Thus, even though MA(1) is known to be stationary, its rewriting in

autoregressive form does not make senSe unless 10li'4 1. The right-

,
hand side would "explode" if 1811 2 1. Hence, we must require 1811. <1

for MA(1) even though no such condition was necessary for stationarity \,,

I \

of MA(1) in its own right. This is called the invertibility' condition ,

for MA(1).

)
An logously, the requirement Icy < 1 is Called the in-

114
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vertibilitycond.ition for AR(1), even tho gh in this case thdcondition

is necessary also for an AR(1) process to be stationary.
. .

For AR and MA processes of higher order, the invertibility

conditions are more complicated, and we merely state them without

derivation.

O

(a) For an AR(p) process to be stationary, the root of the.

characteristic equation

1 - (pi cp2x
2

- .

11,

must lie outside the unit circle. [This anticipates that

at least some of the roots will generally be complex. For

any real root thethe requirement is simply that 1x01 > 1.

Note that, for p = 1, this reduces to the earlier con-

dition, 14)11 < 1. For then the characteristic equation

is 1 - ci) x = 0, whose root is x = 17ipi, so that 1x1 > 1
.1 1

is eqUivalent to Icy <

(b) For a MA(q) process to be ply in

autoregressive,form, the roots of the characteristic

c.

equation

e
1
e2 . 8 xq = 0

q

must lie outside the unit circle.

THE M1AED MODEL; AMA
o

Given the two basic model, ARp) and MA(q), for stationary

processes, it is a natural extension to form a combination of the two

restating in the ARMA (p,q) model(an autoregressive moving - average'

17 5



model of order p,q), with the equation
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4'

[301
z
t

= (IS
1
z
t-1

+ 42 z
t-2

+ +
P
z
t-P

+
4.

a
t "at-1-

-
2
a
t-2

- 0
q
a
t-q

The advantage,of making such a' combination is implicit in the above -

discussion of the reciprocitY" bettTeen AR and MA processes. A finite AR

process was shown to beequivalent to an infinite MA process, and vice

versa. What is more to thegoint here are the equivalences in the

opposite directions: an infinite MA process (or a finite one with a

very large order q) may be expressible as an AR process of very small

order, and, conversely, an AR process of very large order p may be

expressible as an MA process bf low order. Combining the two would,

then, give us the best of two worlds, so to speak. Thus, a.stationary

process which cannot be expressed either by a pure MA or a pure AR

model of reasonably low order may be expressible as a mixed ARMA (p,q)

model with quite small orders p and q. The savings in the number of \

parameters to be estimated may be enqrmous.

The technicality of deriving the varianbe, auto covariances

("-

autocorrelations for the ARMA(p,q) model is,tediaus,, although in

print it-involves no more than a combination of the procedures

desari above for MA(q) AR(p) models separately. Since our

main purpose here is situp to point out the advantage of sometimes

considering the combined ARMA model, we shall not go into these deriva-

tioW. We merely state the results for the simplest case, ARMA(1,1).

The model equation for ARMA(1,1) is

[31] zt (1)izt_1 + a + at - Olat_1

176
Mt.

/



It can be shown that

and

[the same as for AR(1)]
1 - (1)1

1+ - 24)
1
e
1 2

Yo 2
0
a

1 - qr

(1-4
1
0
1
)(4) -6 ) 2

Y1
-

a
(1)

2

1

(11 Y k 2).
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Note that these results reduce 'to those foi MA(1) when (I)
1
= 0, and to

these for AR(1) when (I)
1

O. The autocorrelat ns are immediately,

obtainable by di ision: p. = y.J/y
o

, so we shall not list their formula

here.

of p

MODELS FOR NONSTATIONARY PROCESSES

Stationary time series are seldom "literally true" descriptions

approxi

encountered in practice, although they often provide good

tions. But sometimes -- perhaps often in behavioral-science

applications - -they are not evenagequate approximations, as When

learning or growth' is involved.
.

. Fortun, ely, however, many nonstationary time-series observa-

tions that pccur in real life exhibit what is known as homogeneous

4

nonstationarity, by which 's meant that even though the series moves

about freely without cente ing around a fixed mean, its behavior is

Hessentially similar- the course of time. When this is true,

it often turns out that th series formed by the'successive differences

between adjacent observations,

7 1



[32] Wt = Zt Z
t-1'

is a stationary time series.

Sometimes, we 6ay have to form second-order differences,

vt t
= z

t
2z

t-1
+ z

t-2'

or even higher-order differenceS before stationaiity'is achieved. At

'any rate, the stationary models previously.aescrihed for MA,
.

Akand

ARMA processes are usually found to be applicable to 'differences o

\

suitableorded"'of"observations following a nonstationary,process.

Thus, the most genetal model for nonetationaryaprocesses is one in.,

which the d
th

order differences constitute an ARNA(p,q) pr6cess. This

is known as an integrated autoregressive moving - average process of

order p, d, q and is symbolized ARIMA(p,d,q),I

0 t
.

_IThe qualifier "integrated" simply vans that the terms of. the

.

,

. .
,

.

original series fztl are sums ,(of order d) of the d
th
lorder differences

which foll6W ARMA(p,q). For.example, when d = 1,

zt = ,(zt-zt_i) +.z
t-1

=z- 1 + (z
t-2

-z
t-3

) +

= w
t
+ w

t-1
+ w

t-2
+

CO

= wt
-1'

i=0

Similarly, when d =,2, since w
t

is itself the sum of present and all
.21114

.past v
t

it follows that,

z ,E v

i=0 ,wt-1 i,o j.o

/

a double sum of the second-Order differenc.ep.. V

4
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The equtttion foitARIMA(p,l,q), written in terms of wt, is

simply the ARMA(p,q)/equation'Tor wt;
/

[33] lwt-1
+

.

+ +

- 6 a
q t-q

+ a 1- 6 a - 6 a
p t-P* t 1 t-1 2' t-2

Note, however, that there is one difference between this equation and

A gl the equation,' [31], for the ARMA(1,1) process in zt itself [which can

be readily ggneralized to ARMA(p,q)1, in that [33] dos not contain

-wthe constant term B. Since the mean of ARMA(geq) is the same as that

of AR(p); as shown for ARMA(1,1) after Eq. [31], it follows from Eq.

[301. that E(w
t
) 70. Thus the average of z

t
- z

t-1
over a long period

of time is approximately zero. For the original time series [zt}, this

implies that even though it does not center around a,fixed mean, nor

does it show a perpetual trend upNard,or downward.' Technically, this;

'"iS'tharaeterized by sayink that z
t

shows a stochastic trend on drift,

but not a deterministic one. This",is the situation usually treated.

in time-series analysis. In educational research where we usually
,-----,-

s'ileog)ect learning to be taking plate, it may well be that a deterministic
'

\___-'

tread'should be incorporated. This can be done simply by adding a

non-zerAonstant 8 to the right-hand side of Eq. [33]although Box

and Jenkins (1970, p. 93) advise againSt assuming' a deterministic trend

unless the data give clear evidence of its presefce and form (linear,

quadratic, etc.).' Thus, the burden of the proof seems to be on includ-
,1

. ing the constant term 8 to Eq,1[331.

Flom the foregoing 'discussioris, it his 'clear that nothing ,

I -
really nIrw in the 14137 of mathematical t hniques is needed for, handling°,

.

-

homogeneous non§tationary time-series. 'We simply take differences of

/
,

I

4
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cis

sufficient order to achieve statioriarity '(as'' judged by methods discussed

below), and apply the methods developed for. AR(p), MA(q) or ARMACp,q)

: ----., processes, as the case may be. [Note that when O. = 0, [33] reduces to
, . .

the equation for-an AR(p) 'process in wt, while for .¢i=- 0 it reduces' to

4

dot for: a MA(q):]
I

There is, however, 'one new equati sometimes con-,

veniient to have in dealing with ARIMA(pq) .processes, or theirTipecia
-,

cas,es, ARI, d) and IMA (d, q) 'processes.` is a reVrifing of Eq,. [33],
, v. ( ''? .% '- ,

or oneiof its,mOre special instances; in terms of .z .in a form kninm
. ty,.. 7,

as the (cumulative) random-shock form. We.illustrate this fOr the'

simplest case, ,fheIMA(14;1) proCeSs. 'Th,e equatiofi ,(replacing wt by,
zt-zt-1)

z - zt t-1 = at zr cls .tat-1

t = z + at ut ,t-i

, '. -. '"

, ;

which, it'May'be noted intidentallsy, formally. re,s'emibles an AMA(1,1)
i

1

" \ 1

l 0

-equaVion but, neverthelesS. cahnot be so d ru'N, since'fhe autotegres-
. . . . .

,, , , .,. , ;

srve cbefficiaik 'is ¢
1

= 1 (cf. .Eq. [31]), thus vicilatirig thestationariiy tt..., ,
'..

... ,
.

condition I4.., I <"1..
r

.. . ..:,. , ,',
..:L

.
-, 1 .' r .,

,
. ''?,, ... ::

Using' [34] with t replaced by "t - 1, ./e have
.
,,. . ,.

1
zt- = ,t-2 -4- a - 0' a

.
14:14 may be substitut:e'd back in [34]

..

zt i= (z.t at- 1- 01a,t-2) + atI ,0 a
. .

1 t-1.-

z + a (1-'0 )a - 0 at-2 t3.1. 2 t-2.-

. .

to eliminate
1 .

.1d0

Zt1'



6

A.
'Successively eliminating

tr-2'
z
t-

etc. in this manner, we eventually

gt
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.zt
at +.(1-8

1
)'(a

t-1
+a

t-
:.)

where the sum.df the extends indefinitely.into the past. It is

,cpnvenient to-break this su p down into two parts,

,

i','where k is an lbitrary reference point. We then write

t

z
t

= (1:--e
1
) I a3: . '+ (170

1
) I a. + at,

,

, i=k+1.,

t-1

a. and / a.,

1 ik4-1
.

' 9r, 'upon denoting the first partial sum 'by Lk,

[ 351

t-1
'z

t
= L' + (1 -01) a. + at.

, k i=k+1

I

a

From the strict mathematical.standpoint, the first partial sum

(1=e ) I ai aboVe may not'evensconverge, and hence me have no right

i=00
to denote this by L

k.
However, 'from the practical standpoint we may

reasonably assume that the disturbandes beyond some remote time in the

past shouldnot affect the present observation, so that a, = 0 for

xbose rePoie time pOints: It is-important to remember, however, that

e r

Ild4,i'ar back is remote enough will depend on what the present time

.pointr'is. Thus, Lk is notlstrictlY a constant, but depends in an,

indireCt way on t. (This is what keeps Eq.' (35] froom representing a

stationary proceps.) Lk may
, .

',at time point .

be interpreted aptbe "leVel" of,th

410

18I

syStem

t
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IDENTIFYING THE AOCESS AND ESTIMATING ITS PARAMETERS

The foregoing concludes our discussion- -necessarily i complete

because our aim was to keep ft as elementary as possible - -of the va "ous

models, stationary and nonstationary, for time-series observations. We

now come to the practical question: given a sett of time- series data,

how do we identify which of the several models iS appror4iate, and

how do we estimate the parameters of the selected model ?,

Itlis at this point that We part company from the traditional

1

1

c.

-1

.

.

whichprocedures of time- series anal sis and proRpse alternative methods ni L

we believe to be better adapted to data from longitudinal studies. But

first we must outline the traditional methods and point otft the dif-

ficulties, in applying them to longitudinal data.

Traditional Procedures

Since, as indicated earlier, nonstationary processes of the

hoinogeneous variety are adequately modeled by stationary processes--AR(p),

MA(q) and ARMA(p,q)--in the differences of/ suitable order, we shall -con-

fine our disc ssions primarily to stationary models.

The behavior of the sample counterparts of, the autocorrela-

tions of various lags is, as mentioned earlier, the key to identifying

the appropriate model for a given set of time-series data. We therefore

first indicate how the sample autocorrelations r corresponding to the

theoreticalparametershave traditionally been defined and computed.
p.

1

e Sample Autocorrelation r.. Historic lly, there haye betn

1 ,
.

1 I

/

severalaltrnativelefinitionsproposedtorr3 t the bne currentl

I

favored is s follow :

Given arc observerseries of to z
'
z2,

l ...,
zT at T /time

18 j
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points, we compute the sample variance co
and sample autocovariances

of lag j, c., as

[36)

T

do
T

= (z
t
:Z)2

t=1

T-j

c. = 1. /
T

(z
t
-z)(z

t+3 '

.-z) j = 1, 2, ...

t=1

Where z is the sample mean

T

B sed on the sample variance and autocovariances, the sample autocor-

relation of lag j is defined as

[37) r. = c./c , j = 1, 2, ...
3 3 o

Once the sample autocorrelations have been computed, and

possibly plotted against j for visual inspection of their behavior, we

check to see if the trend with j corresponds approximately to the trend

exhibited by the theoretical autocovariance Pjt..for any of the models

AR(p) or ARMA(p?(1)

,Identification of an MA(q) Process.- If an observed time

series conforms (approximately)to an MA(q) process, this .fact is readily

ir
discerniblebyinspecticrnofthetrendofr.with j. As stated in the

discussion pr'eceding Eq. [13], the theoretical autocorrelations for an

,MA(q) process are non-zero for lags up to an including q, acid then.

Abruptly cirop to' zero. If the sample autocorrelatiass show this sort

of trend ith we' may safely conclude that a moving-average model.

adequately/fits the dala, with ord equal to the las4pij for which r.

is substantially non-zero. For instance, if r1 'alone is Of considerable

fforms*".

4' 18
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magnitude while r2, r3, ... are essentially zero,- we conclude that the

data are adequately modeled by an MA(1) process; if r1 and r2 are sub-

.
4

stantially non-zero and the rest (r3, r4, ...) are of trivial magnitude,

we conclude that MA(2) offers an adequate fit.

There are significance tests available for judging when a

sample autocorrelation is "substantially non zero" and when it is

"essentially zero" within sampling error, but we shall not discuss these

in this brief outline. The interested reacler may refer to Box and

Jenkins (1970, pp. 177-78) , Glass et ,al. (1975; pp. 97-98) or:Nelson

(1973, p. 71-72). w4

Identification of an AR(p) Process. Except when the observed

data sequence is adequately modeled by an AR(1) process, the identifie-
r

ation of the appropriate order p of an autoregressive process fitting

the data 2s mnch more difficult than in the moving-average case.

As shown in Eq. [19], the theoretical autocorrelations for ,

AR(1),exhibit 'an exponential decay with increasing, lag j. If the

sample autocorrelations more or less follow 'this decrees-7

ing geometrically with lag j put not suddenly dropping to a near-zero'

value froth,a certain j on--we are fairly safe in concluding that an

AR(1) model will fit the data adequately.

When the above happy circumstancp does...11ot prevail (and the

fitting of a moving- average model has already been ruled out), things

get much more complicated. InspectilOhe behavior of autocorrelations

ato e L1111 not suffice, and we must .examine what are known as partial

aut co rela t ions.

The basic rata nale hinges on the relation between the', auto-
r

regressive cofficients cl)i and the autocorrelations p. .specified by
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de

the Yule-Walker equations. (see Eqs. [25] and [23]) . We know that for

AR(p) the coefficients ¢ for i > p must vanish; the Yule-Walker

equations enable successively to estimate ;,,he (1)3, .141s by .using the

sample autocorrelations r. in place of the theoretical p3, and hence

to detect for what i 4)i first becomes essentially 'zero.

Assuming that AR(1) has been rIlla'011tby not - decaying

approximately exponentially, we wish to. check if an autoregressive

prOcess of order 2 or greater will fit the data. We replace the pl and

p2 iri the Yule-Walker equations [25])by their sample 4stimates ri and

r2, thus:

rl 61 62r1

¢2

where we have also replaced the chi by qhi to signify that we ,are solving

for estimates of Vii. If the' solution for 4)2 differs significantly from

zero, we conclude that the order of the AR process is at least .2, and

proceed to the next 'step of checking if the order is 3 or greater.

That is, we solve the Yule-Walker equations with p = 3 for 4)3:

r1 = 6 + 6 r + 6 r
-1 1 2 1 3 2

4

r
3

= 4 4r
2

+ 62 r
1

+ (1)3
,

J

If the solution for (/), is 3.gnificantly different from zero, 'e proceed
..)

r .,
'EP.. ...t

4i to p and so on. Eventually, we will come to a 4)

P.*

that does

t
1

not differ significantly from zero, and we then conclude that 'AR(p*-1)
.

18.5
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offers an ad-equate fit of the data (assuming,, of course, that a pure

AR model is,appropriate in the first place).

Although We,, have tot used the term "partial autocorrelation"

in the above discussion, this is the name given to the Oi.solved from

the Yule- Walker equations with p = j,'and it is conventionally denoted

0

¢ii, the s4mple partial autocorrelation of order jf This may be com-
f

puted by,,,Ciamer's rule [see Box and Jenkins (1970, p. 64)] without'hav-

.

ing to solve the Yule-Waler equations in their entirely.

The,significancetestfor
4).,is

quite simple, for it has
JJ

been shown by Quenouille (1949) that the approximate standard error'

of Ci).. is 104iwhen,(1)i =-0. Thus, we` have merely to multiply the comr

puted value of cl)
4i

by ,1' (T being the number of. data points) and refer

to a normal -curve table.

Identification of an ARMA(o,q) Process. If a pure MA model
4

has been ruled out, and the partial autocorrelation (1) does not drop

to nonsignificance for a-long'time (i:e.) until j eEeeds 3 dr 4, say),

then UT must suspect that a.mixed ARMA model may-Offer a better fit t6--

the data with lower orders p and q. (See discussion in section on

the mixed model.) ,Unfortunately; the identi ation of the orders of

an ARMA process is even more complicated a to than identifying the

. order of a pure AR procs.s.

About all we can say is.that,..when,both sample autocorrela-

tions and sla ple partial autocorrelations decline gradually rather

than dripping a ruptly tolnear-zero, a'mixed process is indicated. As .

a working rule, it may be said that it is worth considering an ARMA.

I
4

mod 1 only if both orders are no greater tha 2; i.e.,, ARMA(1,1),

ARMA(1,2), ARMA(2,1) and ARMA(2,2) are the only modelS that should be

1 8 ki
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entertained seriously after pure MA and pure AR models,of reasonably

low order have been ruled Out. Beyond that, it is probably moregfruit-

ful to poStulate a pohstationary model.

Summary of Process-Identification Rules. 'e.may summarize

the foregoing procedures for identifying an appropriate stationary

time-series process.for modeling a sequence of observed data in the form,

of a table listing the rules-olf-thumb. It should always be borne in

'mind that the orders should be relatively low (no higher than 3, perhaps,

. 1

.
. ,

'
v
forat

pure MA and, AR models, and no higher than (2,2) for the mixed ARMA
.

Model) for us to consider a stationary model seriously.

i

Table 1. Behaviors of autocorrelations and partial
autocorrelations' in various processes

9

Process .
Autocorxelations Partial. Auto correlations

MA(q),

AR(1)

AR(p),, p>1

-

ARMA(p,q)

,...)

.Noh-zero for lags 1 through q;
then abruptly drop to 0

Taper of exponentially
"

Taper off according to

P = (PP +.4) P. '+ .

1 1 j-,1 2 3-2

+ (I) P.
-P 3-P .

Irregular pattern for lag 1

through q; then to rtff
according to
P1 = (4)

1
p
j-1

+''. ' :I- (I) P
j-PP.

(Taper,off; but not neces-

sary'to check)

091y1
11

# 0
.

:\5 $C11' $22' '' ' pp 0

(I)

ii
= 0 for j > p

,Ta ei off)

. e .

.

t

Recognizing Nonsttionarity: If the sampl autocofrelations

taper-off very graddally overt long stretch of lag we have prima facie'
- 1

evidence that a ionary process is indicated. MA(q) is certainly

ruled out 'immediately, and even'ifan AR(p) process shohl be appropriate,

i
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it.is likely that the order p will be quite large. If the checking of

the first few partial- -autocorrelations (through 0
.33'

say) confirms this

by their being of considerable magnitude (333 vT > 2, say), AR1Cp) may

' be ruled. out for practical purposes. ARMA(p,q) should probably not be
0.

consideredunless'the partial autocorrelations taper off rather rapidl)

Besides the above considerations, it is'always a good idea to

makg a plot of zt against t to get a visual impresion of the lack of

stationarity--although one shoUld not rely entirely on visual Impre'ssions.

At any rate, if the data are from an area in educational research such

that learning is expected to take place within the period 'of observa-

tion, it is more likely than not that the series will display non-

Jf
stationarity, as mentioned sevet31timesearlier. Such being the case,

it is prob'ably wise not to expend,a large amount of time and effort in

seeking to make a Procrustean fit of the data series to some stationary

mod -e1. Rather, one should adopt the standpoint that nonstationarity

exists unless clear and quick (i.e., with low orders p, q,, or (p, q)

for the model) evidence is available to the contrary.
N .

Oncive decide an a konststionary model, we form the first

differences wt = zt z
t-1

and treat the seriejs w
1 2

w, , w T-1 SUst

as w& did the original observed series. That is, we determine the auto-

corvelations, and (if necesLry) the partial autocorrelatioms of this

new series and check if an MA, AR or MMA model of reasonably low order

11 adequately fit the data. If so, we conclude that the original

I.

s ries Zl, z2, 'zT is adequately. modeled by an IMA(1,q), ARI(p,l)

)1RIMA(p,l,q)xprocress. If not, it must be concluded that even the

:s ries of the.first:-ot6er differences exhibit nonstationarit . We then

ke the second differenceS v
t

=' w
t

s- w and repeat the en ire search

1 8 ;
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procedure with the series v
1

, v v 2. Fortunately, experience

shows that T,k. rarely, if ever, need to go beyond the second=oraer

differences to achieve stationar:ity,

'Estimation of lerameters. Once an appropriate model has b'sen

identified, we'may estimate the parameters of.the model) b using' the

sample autocorrelations. mhat we' do is to substitute the

sample autocorrelation values for the heoret'cal-autocorrelations in

r
the equations relating the latter to basic parameters, a

I

nd solve

. -

the resulting equation(s). e

1

.6 . Poi pure AR processes, the procedure is'straightforward. In

particular,,for.AR(1) we need only take the j = 1 instancerof Eq. [19] ,

.

to" get

=r1.

[Fo'r somewhat greater accuracy of estimation, we might take .the first

few inAtances;

4)1 = r L'
5 4)1 '113

say) ,

and get"-6 least-squares estimate for Zn$1.]

For AR processes of higher order, we maY'Substitute the values
1

of r. for the' corresponding pi 5s in/he Yule-Walker equations (see Eq:
../

[28]).and solve the set of linear equations for the $4. Thus, for

i
m -L,

.le

example, for p = 3 (beyond witich we would 'seldom'wish to go),- the in-'
c .

.

A
,

dicated substitutions in Eq. [28]

.
r1 r

2

r2. ,r3.: 1 r1

r3 r2
rl 1

yield

624
1

t 5

18,i
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t=f1
1

Orl

1 =r2

1 r
1

rl,

r2
S.

r
2

r
l'

1 r
3

For MA and ARMA processes, the procedures are somewhat more

--
complicated because the.relations between the autocorrelations and the

basic parameters are111inear. Thus; foil AM(1), we have, upon sub-

1

stitution of r
1

for p
1

in Eq. [12],

,--.

whiCh is a quadratic in (4)1 with two solutions
:

r -1 + VI. - 4r2
1

' 1 ,

[38], , , $,

4
1 'L

.

? r1

-

#

i
It is easily verified that the two solutions a/re reciprocals of 'each

91

r -
1

I + t2
1

other. Hence,,just'one of then must satisfy the invertibility con-

dition, 16
1

1 j<.1.<.1. This is the one. we take as our estimate for 61.

The equations become much mire complicated for MA(2). Sub-

Siitution of r
I
and r

2,
for p

1
ands)

2'
respectively,in Eqs.-[13] yields

-6
1
+ 6

1
6
2

'and

r - I

1 +61
^

+ 6
2

2
.

-62

4

r
2

-
^2 ^2.

1 +
,

61 + 132 4 ,

.

iterative solution of these' twos equations for/61 afid 62

usual approach. The present wrieer'has found, however,

Simultaneous'

'I

has been the

f.
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after some algebraic manipulations, that we may equivalently. solve for

81 from, the equation

[39] r
1

=

1 - 4r2(1+62)
2 1

and then obtain 6
21
from

-1 + V/1 - 4r (1+0 )
2 -2

1

2r
2

[40]
2

=
2r2

+ 1

This simpiifies the solution in that iteration (by, e.g.,,
i
t e Gauss-

Y
Newton Method) needs to be carried out only on Eq. [39] , with one Jin- '.

known, 61. The closed expression [40] then yields 62. Also, the

.satisfaction of the invertibility condition, that the roots of

4.

1
01x

2
= 0

'must lie outside the unit circle, is built into Eq. [39] and [40]

41.

proyi4ed only that we take the solution of [39] with 1811 < 1.

The procedures for MA pro cessec of order q greater than 2 are,

needless to say, even more complicated. Simultaneous iterative solution,

by ..the 'Gauss Newton method, of the system of nonlinear equations

(generalized from Eqs. 113])'

+6 + . . + 6 6
1 .1 2 q-71 q

^2 ^2' ^
1 + e

1
+ e

2
e
2
q

-6 +6 6 + . 6 6
2 1,3 q-2 q

''2 .2 ^2
1 + + '6

,1

r

q 1+ e2 + 62
1

is about ,all-that can be hoped for.

-1 )

1

4
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For mixed processes ARMA(p,q), the estimation procedure is.,

_too complicated to_expound here, except in gross outline, for all but

the simplegt case, ARMA(1,1). In the general case, recursion relations

`(similar terthose for the pure AR process -cf. Eq. [291) exist between

.
.

P01,, Pq+2, ..0).14.p and the autocorreelatiOns of lag q.or lesS. r.cm

these ttirelations, estimates $1, (I) , for 0
l'

0
2'

.... 0 0
l' 2'

:: 0
p P

can be
....

computed. Then, utilizing he relations betigeen pl, p2, .., p
q

and

the 0
i
's and the 6 's, we may solvefor g , (12, ,.., g by substitiling

i cl
'

i
r for R. and 6

i
for 0

i
.

J
.

. r

., For the simplest case, ARMA4,1), the-details ark; as follows: ,

t ' \ ' from the fourth equation after[31], letting j = 2, we get

P2 41P1'

from which (Aftei replacing p1 and p2 by r1 and r2, respectively)

'1 rl

Then, from two other
.

'followingfollowing [31],.

(14191r) ($l -Ai).

r, = An,

"1' 41 2$161

in which 01 = 2/r1 may be substituted, and "the resulting eqUation solved'

for 0
1.

- (Alternative solutions.for.6
1

will, again be obtained', among

:0

. _

.whictithe one'sati§fying the invertibility. conditioi is ch6sen.)

'

. ,

Now;, all the parameter estimates described.above are, in. r

i

4

the traditional approach, taken to be "preliminary estimates" .only.

A I . .

After these a I

obtained, itis.customary to lase maximum-likelihrd
,

ee

.

. ..

Methods ,[which in this case turns out to be equivalent to minimizing

1J2

e

f
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the sum ,of squares for lack of fit, 1(z
t
-z

2
) ), employing the preliminary

estimates as the starting values for the complicated iterative.procedures

have to be used. We shall not discuss this refinement herefbe-

cadse, as will be argued later, it seems to be unnecessary wh we
A

use the alternative estimation procedure for longitudinal data to be

proposed beloW.

Difficulties with the Traditional Procedures When Applied to Longitudinal

Data

The-reader will have noticed that, throughout the foregoing
.,_

Z-7t- .,

4

discussions, it was assumed- that there /s but one observation zt at

-
4 each 'point in time This is necessarily the case in economic or demog-

raphic applications of time-series analysis, where, for example, the

consumer price index or / the unemployment rate ,in successive years,(or
,

quarters or months) co"stitute the observations zt .

For longitudinal data fom an intact group being observed atdr

a Series of time poi is 1, 2, ..1/., T, however, there are N observations,'
/

zle z2t,o ,
zNt at each tim7/point t(= 1,' 2, T). That.is to1

a

say, .instead of.a vector of data

,/
T

=

-we have an N z T.data,mat ix (where N is the group size)

ti 11
z
1T

z
2T

L

z
NT

' I -

1
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-.
. vo

.

as our input eries-? True, the input data can alway e condensed into

---------'---1,
. ,

a 'row vector 14y cOsidering only the group mean'z,_eat each time-poi4
.,

,. .

,-. z<
as qur input (as we would be forced to dcfrin order to apply the tradi-

tional

.., .

procedures asthey stand).. But thi obviously does violence to

the data,-and throws away a lot-of potentarinformation contained in the

separate rows of the data matrix Z,-...-or,otherwise stated, ignores the

-4orrplatednessof the T observations across each row. To draw an

analogy with analysis of variance, it is akin to using a randomized- ct,

groups design when a repeated-measures design is the correct model to

*t.

use. This, then, 'I'S the major difficulty the present writer sees with

the traditional procedutes of time-series analysis when it is to be

applied to data from longitudinal studies.

Another difficulty with the traditional procedures is_eha

it requires a large number of time points T at
.
Aich the (single)

/

_observations are taken. Box and Jenkins (19744-a4saltzlhat ".'. .to

'4 ,
obtain ayseful-estimate of the autocorrelation-function, we would need

at least fifty observations [i.e., T 2 501. . ." (p.:t3). It is

obviously 6376iida-tb-e3;ect so many tiiii,points of observation in a

--.../.
.

long414i52al'study, unless the unit of dime is as shor.t-as a,day, or

at most a month. But normally, in educational research, weybuld not

be interested in such short time units. An year, a semester, or at

least a quarter, would more likely be the interval between successive

observations. Thus, the number of timt points will usually be in the

range 5 -20 instead of the minimum 50 recommended by Box and:jenkins."

It was precisely in an attempt to resolve the foregoing dif-

ficulties that the present research was undertaken. It seem d intuitively

I

...,"*

'clear that having, say, N = 30 observations at each pf T = 1 time,points

191'



.should,.in some sense yield_nearly.as much information (although of

coutae not just as Much) as having 300 time points, each with one

observation. To look only at the 10 mean observations { .2'

s
.

z seems to be a gross, wat.of data.

It should be mentioned that Glass; Wills
r

have ily, iLitly addressed themselves td tilis prob

.

. ,

.
A 41,-

their first chapter), the distiwtion-between-unit-repetitive and 'unit-
.

and Gottman (1975)

by7discussing (in

,

replicative designs. The fTer refers to the case when an intact

group is "observed a t several)successive points in time"--i.e., 'the

genuine'longitudinal.study. The latter' refers to the case when samples

from'the same conceptual population (e.g.,the populatioh of car drivers

in a certain state in successive years)-,-but one whichidoes not comprise

the same set of individuals over time- -are observed at successive time

points. Although they acknowledge the importance of-both designs and
f

, .

even point out that use of the unit-replicative design may sometimes be ,

.

invalid (as when a change of composition of the po ation occurs from

, 4

before to after an inte rvention) , they opt to deal,.in thei subsequent
,

. .

chapters, solely With ptocedures that are adapted to ta44?-lit--replicative

design- ,Thus, the: substantive examples they present concern such

phenomena as the "percentage.of iiudents in Ireland who passed the

intermediate and senior level examinations of the years 1879-1924," "the

. .

number of,,traffiC fatalities per 10(400,000 driver miles in the sate

of NeW York for the 100 months f.rom#,January 1951 to April 1960," aid

the .'petit i for reconciliation rate. . .in German states. .prior to

and,`rf r fourteen years after institution of the new Civil Code of the

German gmpire On'Jandary 1, 1000."

One cannot, of cour'Se,,fault the Iluthors for their particular
-s

, 1 9 5
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4

choice of design (the unit-treplicative design)lon which to concentrate

"In their book. Bdt the fact remains that -- valuable as their pioneering

efforts in bringing time - series analysis to the attention of educational

,researchers have been--they have not specifically considered the case

of longitudinalfstudies, despite their frequent mention of this phrase.

ti

Estima-tionProcedUres Geared to Longitudinal Studies

.
After a. number of trial- and -error attempts at developing

model-identification and parameter-estimation procedures especially

geared _tot,the application of time-serids analysis `to longitudinal data

(i.e., the unit- repetitive design, in Glass et al.'s' terminology) the

only viable prOcedn'te discovered to date was the "obvious" one of

Utilizing the ordinary, sample correlation matrix based on the data

marix,2,-.- -This is "olygious" only in retrospect, however, since the use

of itbe correlation matricfor estimating the autocorrelations carries

.
with it the assumption that the observations {zit} for every individual

foil. ws-the same stochastic process, with the same parameters, which is

t
clea.ly a strong assumption. (More will be said, about this later.)

Ape'it is 'decided to use the T x T sample correlation matrix

R bas d on the data matrix Z,for estimating the autpcorrelations, the

detai s of how to de so remain to be developed. The simplest way is
.

to tr t the avera bE the correlations
k
with subscripts such that

i,
as an es4mate of pp, the thdoretical autocorrelation of lag j.

What i, the mean of the correlations along thelline parallel and ad-

jacent lto. the main diagonal Of is used as an estimate of thethe mean

of the orrelations along the next line to the left and below this is
It

I 1

(..

1 9 o
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outlined above for the traditional approach. Details are best rel-

egated to a couple of numerical example's, one using real data and the

other based on simulated-data. The functions of these numerical ex-

amples.are twofoldT first, to provide some evidence of the validity

of the proposed parameter-estimation (and hence also of the model-

identification) procedure; and second, to illustrate the method for

detecting and significance - testing an intervention,effecst as developed

by Glass et al. (1975). The latter is not expounded here except in the

context of the numerical examples for two reasons. First, the present

writer is unable tO improve upon (i.e., expound in a more elementary

.fashion than) the original exposition by Glass and his coworkers.

Second, the writrer believes that there must be a way more consonant

with longitudinal data for detecting and testing intervention effects,

but has so far been unable to discover one. Hence, the method developed

by Glass et al. is here used as a "stop-gap' measure rather than some-

;
thing the writer would advocate in earnest for longitudinal studd.es.

k

(This is not to detract from its merits as a method used in conjunction

with unit-replicative as against unit-repetitive designs.)

NUMERICAL EXAMPLES3

Our first example is based on data from a study investigating I"

0.0

3A11 computations were done by K. Tatsuoka on the PLATO system

at the Computer-based Education Research, Laboratory, University of

Zllio at Urbana-Champaign.
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outlined above for the traditional approach. Details are best rel-

egated to a couple of numerical examples, one using real data and the

other based on, simulated-data. The functions of these numerical ex-

amplest are twofold'!" first, to provide some evidence of the validity

of the proposed parameter-estimation (and hence also of the model-

identification) procedure; and second, to illustrate the method for

detecting and significance - testing an intervention,effec,t as developed

by Glass et al. (1975). The latter is not expounded here except in the

context of the numerical examples for two reasons. First, the present

writer is unable to improve upon (i.e., expound in a more elementary

fashion than) the original exposition by Glass and his coworkers.

Second, the writier believes that there must be a way more consonant

with longitudinal data for detecting and testing intervention effects,

but has so far been unable to discover one. Hence, the method developed

by Glass et al. is here used as a "stop -gap's measure rather than some-

:,

thing the writer would advocate in earnest for longitudinal studies.

(This is not to detract from its merits as a method used in conjunction

with unit - replicative as against unit-repetitive designs.)

NUMERICAL EXAMPLES3

Our first example is based on data from a study inve tigating

3All computations were done by K. Tatsuoka on the PLATO system

at the Computer-based Education Research. Laboratory, University of

Illiipigfat Urbana-Champaign.
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possible learning (or practice) effects in completing cloie passages.``

Fifty-two fifth grade pupils were giveri three cloze_passages'-(one on

r

sports, one on music and\one "miscellaneous"--all passages being taken

froma children's encyclopedia) to complete on each Of 16 consecutive

school days. The maximum possible score was 30 (10 for each passage).

COmplete data were abailable for,45 of the 52subjec._ts, so our input

data matrix Z is of order 45 x 16. The column means--i.e:,,the group

- -

means for the 16 days - -were as shown below, in Figure 1 shows their

plot. No discernible learning effect is present.

z.9

z
.8 13.56 12.47 13.11 11.60 17.07 14.13 12 \00

16.69 13.31 13.47 10.00 13.13 12.60 12.22 1,2.47

The correlation matrix based on the data matrix Z--is shOwn

in Table2along with the estimated4cotrelations of lags 1 through 15,

calculated in accordance w de-

cline irregularly and very gradually over the entire span of 15 lags,

which is a sign that nonstationarity may be present. (This view is

N
corroborated by the visual impression provided by Figure 1.) To make

sure that an autoregressive process of order 2'or 3 will not offer an

adequate fit,, however, let us compute the partial autocorrelation

coefficients (1)"
33

and $
44

. ,The'Yule-Walker equations for p = 3, with

i
The\study was conducted by a graduate st ent, Gregoryrego Bell,

under, the supervision of our colleague Steven her. We are greatly

:indebted to Steve for making the data available to us.
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the . rj are, from Eq. [28],

1 .621 .576'

.621 1 .621

.576 .621 1

.621

.604

8-43

since we are interested only in the Value of 0
3

(Which is the'same as

$
33

)
'

we need not solve the entire systeth-of equations for (1) $
2

and

.$3. Using Cramer',s rule, we have

1

.621

'.576

.621

'1

.621

.621

.576

:604

.1012
.297

-1

.621

.576

.621

1

:621

.576

:621

1

. .3412

Although this value is judged insignificant by the traditiOnal

significance test, for

033/T = (.297) (4) = 1.19,

it should be borne in,mind that the significance test is customarily

Used in conjunction with fairly large T (2. 50, say). For

as 16, it would require a $33 value of about .50 before it

s small

judged

significant. In situations like this, one should not rely heavily on

significanc

'value .297

,tests. Regardless of its statistical irsignificance, the

certainly a non-negligible one by any Standark. If we

were to adopt an AR model, we would certainly not be inclined to ignore

22



8-44,

the third term with coefficient .297. Thus, the order of the presumdd

AR proces will beat least 3.

Similarly, by soliiing the Yule-Walker equations with p = 4

for (1)4, we get
344

:144, which is still not close enough.to zero to be

negligible., Thus, if we were to try to fit an AR model to the original

data we would need the order to be at leab't 4.

At this point, both common sepse and the principle of parsi-

mony would suggest that,.. instead oficOntinuing to try to find a, stationary

model to:fitithe original data, it would be more strategic to go to the
. -

first differences, wt = zt - z
t-1.

The new "data matrix" W is now of

order 45 x 15.

Table 3 shows,the 15 x 15 correlation matrix of the w
t
's, and

the estimated autocorrelations of lags 1 through 14, again computed in

accordancewithEq[41].Itisseenthatr.drops abrubtly toa near-

'zero value for j = 2, although there are a few, sporadic values that are

not quite so small at larger lags. (The value -.215 for r
14

may be

discounted, since it is based on just one correlation value, r15,1.)

Thus, it seems legitimate to entertain the MA(1) model for

the sequence of first order differences (which implrs that the original

series follows an IMA(1,1) process). I.e., we assume that

= a
t

-

The next step is to estimate Al by meajns of Eql 1 with p
1
replaced by

r1.1 As 4,re saw earlier, this equation has the solutions

-1 ± V1 -14r
1

2

2r1

IA
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given by Eq. [38]. Substituting r
1

= -.440 in this'equation, we get

1
= .5966 or 1.6761,

of which the one withabsolute valueless than unity, vit.,,61 =,.5966

is the one we need. r

Having obtained this estimate, how can we tell whether' it is

a "good" one? Unliky in the case of'a deterministic model (such as a

0
regressiop equation), we,cannot verify the goodness of fit by.computing

estimated scores 'from the model equation and comparing (or correlating)

them with the observed scores, for the model equation contains the un-

obsery ble random variable a
t

. There a
1

e some complicated and indirect

method for checking the adequacy of the chosen m del and estimated
c. .

4
.N'

parameter(s). (See, e.g., Nelson, 1973, Section 5-11.) In our numerical
(

/
a ple it

.

was decided, after various considerations, to use the follow-
. ,

ing approach, which seemed simpler than existing techniques and ade-,

quate for our purpose. (It also has thd advantage of illustrat5ing, in\
ry /

its simplest form, the general method developed by Glass et al.; 1975,

'for estimating and testing intervention effects.)

Suppos14e imagine a fictitious intervention between days 8

and 9 such, that leads.to an immediate elevation of the "level" of the

System by ,a specified number of units, say 5 .points. The modified plot,

of group means, with all points from day 9son moved upwards by 5 units
e,

from theiroriginal positions in Figure 1, is shown in Figure 2. Of

course, this constant elevation of scores will not affect the correla-

tions among either the original zt's or the first differences wt. Hence,

the estimate of 0
1
Will remain unchanged. We may then ask the following

question: Using the previously estimated 0
I

= .5966 in the technique

2 5

er
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for a group of 45 fifth graders on 16 consecutive
the last eight means artificially boosted by

11

A

4

4,

\



9
for detecting an intervention effect, will we

8-48

e able to "retrieve" the

built-in change in level of +5 units? If so, we may be reasonably

assured thht both the model chosen and the estimated parameter value

must have"been adequate.

The appropriate instance of the intervention - effect 'estimation

. 4
technique developed by` Glass and his.coworkers, following Kep____.(197-2)--;-----

is as follows. Using the random7-shock 5EF the,IMA(1,1Y model

equation (i.e., Eq. [35]) Th'k arbitrarily taken tp be 0, we write
,

.

z = I: 4-.(1=8 )' a + a*.(t=1,2,...,8)
.

o

.

.

t 1 1 i
at

i=1

s . .

as the structural equation for observations from day 1 through day 8.
v 1

.

(Here "observation" refers to the group mean for each day.) Then, after
, ...,

an intervention between days 8 and 9 which pis assumed to result in a

change of level by d unit, the structural equation will change to

t-1

z
t
+ L

1
(1 -81)'

t
a.'+ a- + d (t=9,...,16)

't-1

from day 9 on.

The next step,is to recursively define a sequence of trans-
4

formed variables {yd, as follows:

[42]

' y
t
= (z

t
-7z

t-1
) +

1
y
t-1

, 2

It can be showljthat the ..y thus defined flare expressible as linear
t

functions of L1, 8
1

and a
t

. Namely,.

2

2



.4.

Y2

Y9

Y10

.

Y16

+a
2

t 1L1
+ 6 + a

9

,

6 Ll + Olo + a
10

t

15L1 a16
1 1

or, in matrix notatign
)

[43]

1.

238 '

8-49



.1

which may. symbolically be written

y F 13 +' a, -

8-50

where
y

and a are Obvi- 6-6s, X is the 16 x 2 matrix of successive powers
ri ri

. .

1

of 61 and 0's, and 8 =
l'

6] .

Once the equati&I is cast in this form the standard least-

squares estimate 8 of 8 for linear models may be
'I/ 'I/

[44] cx x ti

compute d as

Here the v ctor y is const c ed, in accordance with.Eqs. (42

. Figure 2), and .the est mate4 Q1 = .

from ,,t, e ."opserved quence7{zt) (which are the group means plotted is

'

966 replacing 61.. We
,-

iliZIStrate

is.

the calculations in detail for the first few elements of y.

Z vector is:
fL,

f

z = [13.56, 12.47,,lis11, 1L60, ..., 17.60, 17.22, 17.47]

Hence, the vector of first' difference is

do-7

W = [13.56, -1.09, :64, -1.451, .. ., -7'.53, -.38, 425i14
ri

,
Then, in accordance with Eq. [4.2], we get

y
1
= z

1
= 13.56

(z2-z1) 4-61371

= -1.09 + (.5966)(13.56) = .6.9999

y3 = .64 +,(.5966)(6.9999) = 4.8161

y4 = -1.51 + f.5966)(4.8161) = 1.3633,
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and so on.l The complete vector z is, with dlements rounded to two

decimal pl ces, )

= [13.56, 7.00, 4.82, 1.36, 6.28, ,82, -1.64, 2.5

`.7.69, 1.21, .88, - 2.94, 1.37, .29, -.21, .12]

With this and the 16 x 2 matrix X with 01 replaced by its
ti

estimate e .5966, we may compute '8' in accordance with Eq. [44]. The

result iS

11.1 5.1276 .

[ L11

, .

., ;'. )
, 1

The estimited,\Ivalue, 5.1276,of d is seen to belvery close-Fo'the true ,

, A

'value, 5.0, thqt we deliberately introduced into the system. Thus, wo

f,
have so* evid nce to support the proposition, that the model chosen and

the estimated p.rameter value are adequate. This, in turn, suggests

that'theproposedmetbodforestimating.is a viable one.pj

'However, the skeptic may feels in view 'of the artificial

manner in which_an "intervention effect" was introduced, that we merely

"got out what we put in," and the particular value of 61 was immaterial.

To check if this could have been the case, computations for ("Ss were re-

peated with the values of 01 used.in Eqs. [41] -[44] systematiCally

varied from .10 through .90 in steps of .05. The results, abbreviated

to'show the values of 46 only for every other value used, were ase

1

f0.1 0 WS :*

61 .10 .20 .30 .40 .50 .60 .70 .80 .90

CS 6.168 6.0-89',5.934 5 .7,06 5.425 5.116 4.812 4.550 4.372



8-2

These, results effectively refute the hypothetical skeptic's contention.

The value used for 0
1

does make,a difference in the'Nalue obtaihed for

6. And the value .5966-esti ated by the proposed method comes close to
,

being a optimal one. (By in erpolation in'the finer table, with

\

. 1

varied in steps of .05, the "best" value of 01 iS found to be .6037,

yielding 6 = 5.000 td three decimal places.)

At the same time,,ohowever, we note that the obtained value

of CS varies fairly slowly with In In other words, the estimation of

,6 seems to be fairly robugt with respect to Anor inaccuracies in the

esti mation of 81, This is the ground on which we ea'rlier asserted that

further refin ent'of parameter estimates by,max mum-likelihood methods

seemed unnecessary, at least when the main purpose is to estimate the

intervention effect. Of course', one instance does not prove a general

proposition,.and.this assertion must remain a working hypothesis unless

and until it is,confirmed by fur'ther research.

Second' Example: Simulated Data

,a d

g..

In order to check the performance of the proposed method for
0

a model of order higher than 1, simulated data following an AR(2) proc-

ess were generated as follows.,

Taking 4):= .602 = and 13. = 3 in Eq. [21]', the par-

ticular AR(2) model used was
tz

z
t
= 3 + .6z

t-1
+ .3z

t-2
+ a

t'

with a
t
generated by a random unit-normal generator and resc

that Aua = 4. One, hundred independeht sequ ncesi

/
11.3'

z
116/

SO



A,

8 -53.

were generated by use df the above equation, except for t = 1 and 2,

for which ry

zl 3 + al

'and z
2
= 3 + .6z

1
+ a

2

were used since there are no observations prior to zl.

The result was a 100 x 16 data matrix Z, whose column means
'

were as follows:

'22.41z
.1 -

- z
.8

: 18.71 22.14 22.96 23.94 24.79 24.90 24.94

z.9 - z.16: 24.98 26.24 25.86 26.74 27.33 27.81 28.28' 28.51

That these.show a monotone increase with t reflects the fact our choice

of a
a
t.e4) was, in retrospect, too'small relative to (Pi = .6, (1)2 = .3 to

produce an oscillitating series in the short run of 16 -:time points.

This doesnot, however, vitiate the results of further analysis.

I

The cOrr4lation matrix, based on this simulated data matrix-
,

along4

t.

/
is hown in is 4? along with estimated autocorrelations of lags 1-15,,

calculated in acc45r4ancjith Eq. [41].
... ..

i

i

correlations weilenpased On
e
simulatedjaata following a,particular process,

.and go through he mo ions of identifying an appropriate Model 'And

41
araeter(s).. First of all, we observe thathere.is

4.

Now let us peed we did not know that thesg estimated auto-/.
'estimating the

no abrupt drop of the sample autocorrelations to near-zero; so an MA
(

process is ruled out. Next, w 4pte that there is a steady and fairly

rapid declining of r. with j- j like the very gradual and irregular

declining found' in Table '2. So a statiOnary4AR process of some order

2i
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,- :s. .

is4iggested (cf. Table1 for the behavior of autocorrelations for
. --.

,

various processes).* The question A, what' order?
. . .

The rate of decline doe* not seem quite as rapid as to suggest

..

AR(1), which shows an exponential decay of the p.. However, taking
. i

, --:----

;lie successive ratios r. r
1-. j-1

.

modelis adopted), it seems barely possible that an AR(1) Model with

(which should all estimate (I)
1

if an AR(1)

1
= .90 might fit the data.` .(We say 'barely possibld" b c se(the

\value..90 for (1)1 estimated.fr'om the su s ve ratios is consi rably

larger thanT1 = .816, which should also be an estimate of(P1 if AR(1)

is in fact the correct model.) We therefore need to look at the es- I

timated partial auto correlations to.decide the issue.

Setting P = 2, the YUle-Walker equations (cf. Eq., [25])-with

. p
1
and p

2
replaced 147 r

1
and r

2'
respectively, are

1
+ .816 (I)

2
.816

.816 (1)
1
+ ($2 = .760

31"

whose solutions are

= .586 and Ci;2 = .,282.

Clearly, (1)2 is not small enough to conclude that (1)2 = p. That is, ,an

AR(1) model is ruled out as inappropria'te.

Next, let us compute (I)
33

(4
3
)-from the Yule-Walker equatiOns

with p = 3; i.e.,

1
e.' ^ -.. e. ,

.816 .760
(P1

.816

1 .81'
$2

*160

.816 1 ci;3 / .685
/

.. f . A

1,4

1/

4



4

Usirig Cramer's rule, we

1

.816#1

760

get

.816 .816

.816,

.760

.685

4)33
1

.816

.816

1

%760

.816\

V.760 .816 1\

.0033
.032,

.1028

8 -56

which is negligibly different'from 0.. We maytherefore conclude that

AR(2Y
,
°fiefs an adequate fit to the data.

Once'we_ado tAR(2), our estimates of 4)1 _and 4)2 are as pre-

,

viously tomputed om the Yule-Walker eqd.kticIns with p = 2; namely,

e

1 I.
= .586 and 4)

2
=

0

Abandoning our make-belief that we do ot know "genealogy"

of our data the estimated values for 4)
1

and 4)
2

quite close to the '

actual valq s, .60 and .30, that were used to geh rate the simulated

data. We ma erefore conclude that tl$ proposed method forparaiet r

estimation "works" for cond-order processes as well ai'the first.

SUMMARY AND REMARKS.

,The bulk of.this chapter is admittedly exposi dry in nature,.

but it is' believed that the exposition was' made in a mote elementary

manner than found in currently available books on the ubject--alt 'ugh,

.
,

by the same token:the tgatment was necepsarily incomplete in s
',.

technical detail.
,

The one original c'p,ntributitor4,made
//
In this hapter

-1.
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proposal of ark alternative method for estimating autocorrelations of

various lags--the key to model identification and parameter estimation

in time-series-analysis. This method Is based on the ordinary sample

correlation matrix which is computable whenever genuine loggitudinal

data are to he'analyzed (Le., when a single intact,grou has been

observed at several time points). The traditional fo estimating

autocorrelations (based on a single observation at each point in time?'

.

'''',..
such as group means on the several measurement occasions, it was

argued, Ls not appropriate for two teasons. First, it ignores the

correlatedness inherent in longitudinal data, just as though we were to

use a randomized groups design ANOVA when a repeated--measures design

is proper. Second, the traditional method reqiiires such a long series

of observations in time (at least 50 observation., according to Box and

Jenkins, 1970) as is almost never available in longitudinal studies.

The ptoposed method was put to a test by means of two

numerical examples,,tone based on real'data and the other, on simulated

data. The outcomes of these analyses aquately confirmed the "validity"

ofthe proposed method.

Directions for Future Research

Obviously, further study of the efficacy of the proposed

method is needed; whacwas accomplished within the contract period-has,

only scratched the surface in this respect. One thing which urgently,

needs to be *done is to relax the assumption, inherent in the method

as it stands,, that the parameters are identical for all individualgin

a'group. This c early an unrealistic,assumption--althoUgh, inone

sense, an inng uoug one. When this assumption is untenable, what we
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get as parameter estimates are some sort of averages of the respective

individual.parameters. However, it would be much more satisfactory if

individual differences in the parameters could be explicitly considered.

For instance, by assuming some particular distribution of each parameter

over a population of individuals, the'autocorrelations could probably

be related to the moments of this distribution.

Another matter which requires further researoh is the method

of estimating and testing intervention effects. The techniques developed

7
by Glass, Willson and Gottman (1975) areperfectly satisfactory in

'situations where there is but one observation per time point. But,

somehow, one feels that they-are wasteful of information when applied 7

to data from genuine longitudinal studies.

It

inroads into

mainly becaus

analysis at t

with certain

is regrettable that the present researcher could make no

the above-mentioned problems within the contrast period,

e he was a relative novice in the discipline of time-series
\\

he outset of the period--a novice who was disatisfied

aspects of the traditional methods of time-series analysis

when they are sought to be applied to longitudinal data. However, he

intends to follow up this line of resew h in the future.

47/
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In(Chaptet 44);If this Report, Linn an Slinde have preSented
1

// /
/ Ji /-

, 0
,--li sur ey o the literarre on the top/ c of mea urement of change and i

many roblems--seemingly insurmountable problems-that led Crpnbach and

HAPTER, 9

ESTI 'TION OF TRUE HANGE: UPPE

INTRODUC ION

DLO R BOUNDS'

Furby (1970) to recommend against the use of gain scores, and advise

instead that researchers."frame their questions in other ways."

Without discounting the seriousness of the problems surround

ing the measurement of change, the present writers wish to propose \

that at least some of these problems can be traced to an unjustifiable

assumptiOn in classical test theory: that the error components of any

pair of test scores arg uncorrelated. In this chapterye explore new

_s

vistas that may be opened if the assumption of "universally uncorrelated'
ti

measurement. errors" is dropped. The dropping of this assumption, how-
,

ever, lead'A to mathematical problems that are insurmountable unle'ss

techniques hitherto not utilized in test theor --in particular, operator

analysis--are introduced. This approach, pioneered in the first

author's recent doctoral dissertation (K. Tatsuoka, 1975), is used in

this chapter.

NOTATION AND DEFINITIONS

By and large, the notation used in this chapter follows

that of Lord and Novick (1968), but there are some peculiarities.

So we Aet folith a complete 'notation 1 guide in this section, even

though many o,f the symbols are in u iversal use and need no explanation.
1,

2 410

- A



All lower-tase oman letters (except those u

/

/
i.and 4erscripts) stand or p rson-space vectors ins de

/resealed by the fact004.1/VN-1, where N'is the sampllis
.

/

LAI A 4'1
2 2

11

1
X2

XN )

-

, x - X X X
_ -

9-2

ed as subscripts

iation form,

ze. Thus, e.g.,

is the N-vector whosd elements are the deviation scores on test X for

1

a sample of N person , ealch divided by 1.

b

All Greek 1ett4rs stand for scalars; while upper-case Roman

letters either stand forlscalars (like N) or are generic symbol§ for

tests (like X and Y) or other random variables.
d,

Animmediate consequence of the above definition of the test

vector x'is that its squared norm (i.e., the scalar product of x with

itself) represents the variance of test X:

r 2

(x,x) = 114 =

- _ -1_61

a
N 2, (X . X)

N - 1 fix.,
2

f"
=1

, r r .
4'

Similarly,- the scalar prodci'between two different test vectors x and

y represents the covariance between tests X and Y:

-Y
,

/ (X. (Y

N -
- a(x,y).

i=1, 41-1A./N-1

Note that (x,y) is used. instead of the more customary x y for a scalar

. _product. This isbecause we will never have occasion to used the.
V

matrix product xy of two vectors, and scalar products will mostly occur

as coefficients in a linear combination of vectors so it is convenient
I

to set them apart With parentheSles.
1

1

In this 'notation the simple regressiOn coefficient b of

\

yx

Y on X, whose usual formula is

\

.

2 z,



bepomea

s

;Which

when x

10

Jxy Cov(X,Y)

x r 2 Var(X) '

byx
0(x' YY x,Y)

4

or sitIply

11x11.2
r
114

further reduces to

yX
= c(x,y),. or simply (x,y),

td

is of= unit norm (i.e., Hicil = 1)

9-3

,.

This form will repeatedly
. .

occur in the sequel. Also, the correlation coefficient
0

1XY
Cov(X,Y)

r =

XY VVar(X))/Var(k)

becomes

r
xY

(1')c,y)' (x,y)

II III 1111 11x11 IIY II

Hence, orthogonality of 'pwo vectdri.x and y [i.e., (x,y) = 0] is

'synonymbfis with the un6.rrelatedness of the two tests X and Y which

they represent (r = We shall often us the terms "orthogonal"

and "upcprrelated" interchangeably--even tho gh, strictly speaking,

the former is a geometric property of two vectors while tf)e latter

is a statistical property of the two tests represented by. the vectors. yj

The component of a vector y in the direction of another

deco x is given.by

(Y,x)/11x11, or simply (y,x) if 114 = 1.

[This follows from the cosine law,

(x,y) 114 IIYII cos 0,

221
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(where 8 is the angle between the vectors x and y) and the fact

verifiable by elementary geometry; that the component in.-question is

HAI cos a.) ,

The projection(more precisely orthogonal) of a vector y onto

:vector x is a vector whose norm (length) is equal to the component of

y'Pn.the direction x, and whose direction is that of x. In other words,

it is the component (as defined above) multiplied by the unit vector

in the direction of x; i.e.,

Proj 1(4 114 2
11x11

x.

No4,that the coefficient of x !pre is Precisely the iegession coef-

fiaent b of y on x, defined earlie
yx

0 the same thing as the regrestion o

ldenoted

= (Y,x)
Ike

Thais, the projection of y on x

test Y on test X, and may be

This interpretation of regression as the outcome of applying the "pro-

jection operator" to a vector is what enables us to.uLlize the various

theorems and techniques of operatoe,analysis alluded to in the Intro-

duction.

denoted by

The multiple regression of test Y on tests X1, X2,...., Xp is

R(Y1,2ci, x2, x ).

Geometrically,
) y corresponds to the projection of y onto the space

spanned by xl, x2, ...,

Finally, two symbols which probably need no explanation 'are:

21-24 2^



1

p. =.reliablp.ity of test, X.

and

9-5

ES IMATING TRUE CHANGE FROM PRE- AND POST-TEST SCORES

p(x,y) =.,correlation between X and Y.

-;

The multiple regression equation for estimating .1; from

,

the obserVed pre- and post-test scores, X
1
and X2,, may be writs as

[1] t2 - tl t -tilxi,x2).

However, it is more convenient to use as predictors a pair of uncorrelated

variables (such as the principal component's, for example) instead the

original X1 and X2 themselves. A further convenience is to have the

derived predictor variables standardized so their vectors will be of

unit norm. It is well-known that multiple'iegression is invariant of

any nonsingular linear transformation of the predictor variables; i.e.,

if the derived predictors are linear combinations of the original pre-

dictors-tuch that the coefficient determinant is non-zero, then using

the multiple regression equation with the transformed predictors will

yield predictions identical to those using the original multiple re-

gression equatio'ii. For example, if the original predictors are X
1

and

X2, a new pair of ;peedictors Y
1
and Y2 defined by

Yl .Y11X1 Y12X2

Y2 .Y21X1 2X2'

will the predictions unchanged so long as
. .

2



eq ilalent multiple regression equation using a pair of uncorrelated,

Yll Y12

# 0.

Y Y
21 22

9-6

0

'or the above reasons, we proposeto replace Eq. [1] by an

unit-norm vectors {c1,c2} (mathematically known as an orthonormal base

of the space spanned bY x
1
and x

2
) as the, predictors,°i.e.,

[2] t
2

-1 = R(t
2
-t

1
Ici

'

c
2

)
'

f

46 where the exact nature of, c
1

and c
2
(i.e., how they are derived from x

1

and x2) is to be specified later. Since c
1
and c

2
are uncorrelated and

.-

have unit norms (i.ec, the standard deviations of C
1
and C

2
are unity),

-
Eq. [2] may further be rewritten, successively, as

13] t
2
- t

1
= c(t

2
-t c

1
)c

1
tl,c2)c2

.

= [a(t2,c1) a(t c
1
)]c

1
+ [a(t c

2
) - Y(t1,c2)]c2

[The first step follows from the facts that, when the predictors are

uncorrelated, the partial regression coefficients are the same as the

simple regression coefficients,
.
and that c

1
and c are of unit norm--

,see Section 2. The second step follows from tfre fact that the covariance

of the difference between two variables with a third equals the dif-'

ference between their respective covariances with the third variable:

Cov(A-B,C) = Cov(A,C) - Cov(B,C).]

From the last member of Eq. [3] it is apparent that, in order

to be able to use Eq. [2] in practice,,we must know (i.e., be able to

calculate)
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6(ti,C1), 6(ti,C2), 6(t2,c1) and 6(t2,C2).

Recalling that cl and`c2 are to be defined as linear combinations of

x
1
and x2, i.e.,

c. =
11

x
1 1
+ a.

2
x
2

(i=1,2),

dr it follows that

0(t.,c.1 ) = a(t.,a. x
1
+a

i2
x
2

)

3 3 11

= 0(t.,a.
1
x
1'
) + 0(t.,a

i2
3r)

3,41

= a. (qt. ,x) + a. o(t.,x )(i=1,2; j=1,2).
311 ' 1 12 2

Therefore, to use Eq. [2]'-we must know

a(t
l' 1

x,)
'

a(t
l'
x
2 '

) 6(t
2'
x
1
) and 6(12' x

2
).

Of these, however, we already know the like-subscripted covariances,

o(ti,x1) and c(t2,x2); i.e.,

[4.) (q11 ,x 1) = 11x1112p1 and O(t2,x2) = Ilx211
2
p2,

where pl and p2 are the reliabilities of the pretest X1 and posttest X2,

respectively.)

But

Each of Eqs. [4]'may be derived as follows:

Px = P(x,t)
2

[66x,t)
2t

x t

6(x,1) = OxOtpx.

0

X 0
So 0

t
= 0X x x

x

2
6(x, t) ox(ox = ox px.

22,3
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Hence, we need only show how to find'the corss-subscripted covariances,

a(t x
2

) and a(t
2
,x

1
).

AM
It turns out that these connot be determined exactly, but their

1

upper and lower bounds can be computed. Toward this end, we,first

discuss some mathematical preliminaries.

BOUNDS FOR (t.,x.) WHERE(i # j)

A powerful mathematical tool for obtaining bounds on scalar

products of the sort we are interested in is Bessel's Inequality:

[5]

Given an orthonormal set {a
1,

a2, ..., a
v
} (i.e., a

set of mutually orthogonal vectors all of unit' norm)

and any vector y, it is true that

V

/ CY'ai) Y
2 2

.

1=1

It may be noted that, in any finite dimensional space, this inequality

,

follows readily from the Pythagorean theorem. The equal sign holds
4

when v'is the dimensionality of the space in which y lies (i.e., when

{a
1,

a2, ..., a } is a complete orthonormal set, or an orthonormal base

of the space), for the sum on the left is then the sum of the squares -

of the components of y along all of the orthogonal axes. If V is less

than theait4sionality of the space, the left-hand sum will laCk the

squares of some of the components of y, and hence the "less than" sign

may hold. (We cannot say that the "less than" sign necessarily holds,

becsuSe the components whose squares are missing may happen to be zero

anyway.) The reason why inequality [.5] is given a celebrated name is

that Bessel proved it to hold even for a vector space of infinite

dimensionality (i.e.,a Hilbert space), in which case V itself may beio

2 6
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infinite and yet {al, a2, ...} may fail to be a complete orthonormal

set.

For our particular a'plication, we choose the orthonormal set

It

{al, a
2' '

.. a
v
} as follows: Let x

l'
x
1 '

x
1

be the ob-

. II

served-score vectors of N - 2 paraliel'tests of.X , and el, e
1- 1, 1 , ''

e
1

(N-2)
be the corresponding error-score vectors. Then, since the error

components of any two parallel tests are by definition uncorrelated, it

follows that

{4.0Y/114.0)11, e1/11411, 4.N-2)/114.N-2)10 *A

is an oftyhonormal set comprising N 1 vectors (one less than the total

dimensionality N, of our space). Here e
(0)

is the error-score vector

of X, itself, the superscript '(0)' being added for consistency of

notation.

Using this particular orthonormal set as the {al, a2, ...
l' 2

au} in Bessel's inequality [5], we get

[6]

N-2
(y (1)

/
11 (1) II) 2 5 it Y II

2

i=0

Now, from the definition of ,reliability, we know that

II 41)112 Ilx1112(1-P )1

for all i = 0, 1, 2, ..., N - 2. Therefore [6] becomes
4

N-2

(Y,e.1) /11x111)/T-I-P)2 s 1412,'
i=0

*

or, upon factoring out .1./Jrx1112(1-pt) from the summation on the left and

dividing by it on both sides,

[7] (Y,e(1 i))2 S IlY112 Vi.1 1I12(17P )
i=0
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This relation, as it stands, is clearly intractable. We.

therefore introduce a simplifying assumption: that the error component

of each of several parallel tests has the same covariance with the

error component 'of a given external test, or the assumption of "homo-

geneity of error coveriances" for parallel measures with another test,

for brevity. Symbolically, we assume

(
{8]

4

0(e
y
,e

1

0)
) = G(e

y
,e

(1)
) = = 0(e

y
2e

(N-2)
) E u(e

y
2e

1
)2 say.

This assumption is not as far-fetched as it may seem at first glance,

for it merely requires that the observed-score-covariances between Y

and- each of X1, X1, ..., Xi
(N-2)

are all equal.2 Furthermore, 0(y,x1)

_.d(y,x1) = ...; together-with tile.assuMption that 0 = 0t =.
xi xi.

(since X1, X1, .. are parallel,measures), implies and. is implied by

2blis may be seen as follows:

0(y ,x1) = 0(y,x1)-

G(t
y
+e t

1
+e

1,

) ='6(ty+ey,t
1
+el)

[because any observed score is, by definition, equal to the sum of the

true score and the error score, and since'x
1 'a

nd x haye the same true-

score component].

-> . ,a(yt,i) +(7(ty,elLtil(ey,t1) + cr(e,,e1)

,

1

,

0(t
y
2t

1
) G(t

y
2e + Gke

y2
t
1

) + G,(e
y 1

)

.

0(e
y
2e

1
) = u(e

y
2e

1
) .

[since G(t ,e ) = G(`t
y
2e

1
) = 0]

2 24 8

,
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p(y",x1)=p(y,xi)'= .... Thus, the homogeneity of error covariances

assumption,[8] is seen tole equivalent to assuming that all,members of

a set of parrallel tests correlate equally with a given external test,

which eems to be a reasonable assumption.

It should be noted that [8] represents a liberalization olf

the traditional assumption in classical test theory, in that [8] merely

states that the N - 1 error covariances are equal while,the tradition 1

(

assumption requires that these covariances all be equal to zero (the

"universally uncarrelated measurement errors" assumption)., other

words, the traditidnal assumption is a special case of [8], wfith

a(e ,e1) = 0.

When we introduce Eqs. [8] into inequality [7], t,e summands

on the left all become equal, and the sum reduces to (N-1) (e
y
,e

1
).

0.Hence, inequality [7] reduces to

1 - pl

[9]. (y,el)
2

1142 N-

Note, incidentally, that this implies that if pl = 1 or N c0,

(y,e
1
) = 0--in agreement with,the traditional assumption. It is clear,

however, that the "homogeneity of error cOvviances" assumption [8] is

incompatible with letting N 03, for then the infinite series on the

left-hand side of inequality [7] must diverge (s'ince it is the sum of

an infinite number .of constant positive terms) and cannot be_bounded.

We therefore exclude the possibility that N c0, and conclude that the

only condition under which [9] leads to the classical assumption,

(y,e1) = 0, is when pl 1. That is, within the realm Of perfectly

reliable tests, the error components of any two tests are always
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I con -'uncorrelated--which is trlvia ly true since the errois ores ;re con-
-,

stantky eqUal to zero anyway.
,'

,

Next, from the definition,,

\x1 = ti 4 el

it follows that

P1 7 xl 1

and hence that

(Y'xl) (Y't1).

Substituting this., in [9],'we get

or

whence

[10]

I
1 - p

[(y,x1) (y,t ]2 IlY II 2 hie N - l'
1,

1p
-1131 IIxlI (Y:x1)

(3,,t1) 1131 !kill

7

1-p

(Y,x3. 11Y II 119:11 (Y't (Y'xl) Hyll: Ilx II

1 <
N-1;

1

Note, again that if pi = 1, this yields

(y,ti) = (y,x

which is the classical test-theory result under the assumption of 'un-

morrelated errors of measurement for. any pair of tests.

Now recalling that y,was an arbitrary test vector (other than

one of the parallel measures of x1), we may let y = x2, the post-test'

230
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vector. In this instance [10] becomes

,

(x x2) II x1 II

1-p1

11x211 (tl'x2) xl'x2)

/l-p

1l x211

; 1

andjsimilar y,.by interchanging the roles of x
1
and x

2'
we get

[11b] !1x211

1-p2
(t

2'
x.) S (x x

2
)

. 1

9 -13

Thus, we have established upper an lower bounds for a(t1,x2)

and cr(t
2'

x )
'

the cross-subscripted covariances which Were all that

remained to be known in order to be able to use Eq. [2] in practice. It

is true that we have,not d.,etPrmined these covariances exactly (which

seems impossible to do in principle), and hence an exact estimate of,

t2 - ti is infeasible. However, by suitable substitutions of the upper

and lower bounds of cr(t.,x.1 )--depending on whether they appear with a
3

positive or negative sign in the regression equation after c1 and c
2

have been specified--we are'able to obtain upper and lower boundS for

t2

A computer program for implementing the foregoing developlents

is being written, but,it could not be completed within ple contract

period--mainly because it seeks to permit a larger set of predictor

ariahles,than just fx1,x2} in estimating t2 - ti. For it stands to

reason (as, indeed, Cronbach and Furby, 1970,-have suggested) that the

more predictors--including demographic variables--we employ, the be ter

will bt the accuracy with which we can estimate t2 - ti.

As this point, we can only present comp ed results for a

231
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lower bound of the accuracy of the estimate

ourselves in thenext.section.

, to which we address

ACCURACY OF ESTIMATE

\
/

. ./ ,

;\

The/ accuracy of any estimate made by multiple regression may

be guaged .by the multiple correlation coefficient. In the pres nt

, /N ....1--"---..

context, we wish to calculate p(t2-t1, t2-t1), where t t1 defined

$ , .

by Eq. [2]. However, since its exact value cannot be determin d in

li. principle, we muse be satis'fed with finding a lower bound for

p(t2 t1, t--tj.) .

is well-known that, when the predictor' variables are tin -

correlated, -the squared multiple -R is the sum of the squares ofrthe

zero-order correlations between the several predictors and till criterion.

For the case at hand, we have

(t
2

t
2
=t

1
) = P

2
(t,

2
-t c

1
) + f)(t

2
-t c

2
),

or, since c
1

and- c
2
are of unit norm besides being orthogonal (uncor-

relatedl,

14
ci

2
(t

2
-t )

2
(t

2
-t c

2
)

[12) p
2
(t-rt 't' -t ) +

2 l' 2 1
t 2-t 1112 II ti-ti

-112

Here {ci,c } may be any oxthonormal b'ase of the space spanned by, xl and

x2. It is natural to take as ci the unit vector,in the drection x2 -xi

40
(since we are estimating t2 - t1), whereupon c2 is the unit vector

orthogonal to' x2 - xl in the plane defined by xl and x2. This rocedure

for constructing an orthonormal base is called the Gram Schmidt, pro'-

cedure (see, Rao% 1968). The results are

232
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<3.) / II x2-xi cci = (x2-

.

C
2

= { x
2

-
2'

Cx c
1
) c

1 }I II 2'
c
1
)c

1
II

,

..

t ....
With thi special choice of, c

1
and )

c
2

(recall that,any pow-singukan
,

-

linear transformation of x and x will leavethe multiple regression,and
. 1 2

Pr

and hence also the multiple coiiilltion coefficient, invariant),

two temscmt-h-d-fighf=hand side of Eq. [12, acquire thefollowing,

interpretations:

First term =;reliability3.of

.s

SecOnd terra = squared correlation lietWeen T
2.

-.T' and the

residual4ed-post-test scor6;stlar6ialling out

X2 - X1.

3Because,- by definition,

fp
/

= tr 2
P ,

x2 xi -t
2
-t

l'
x
2

-

a2

.t

2 ,
a t2-t1, x2 x1)

t t., x x )

IIt2tlillx2:x111
2

a2(t2-t1, (x2- x
1
)/11x

2
-x111) ,

II t2-t1II 2

2 3,3



9-16

Since c
1

'and c
2

ar
e
linear combinations of x

1
and x

2'
the

numerators of the fractions on the right-hand side of [12] are quadratic

Junctions of c(t1,x1), G(t
12

x
2
), G(t

2
,x

1
), G(t ,x

2
), of which the like-

subsciipted covariances are, as mentioned earlier; known exactly, and

we have obtained upper and lower bounds for the cross-subscripted co-
,

variances as inequalities [ila] and [11b] above. Hence, lower bounds

of these numerator expressions may be calculated by subStituting the

lower,or upper bounds of (t
1
,x

2
) and (t2 ,x1)-- depending on the signs\

with which they occur.

The denominator expression (common to both fractions) does

.

not immediately appear to be related to (t
1
,x
2
) and (t

2
2x

1
)2 but a

.

little.algebraic mani reveals that it actually is related to

them. To wit,

/

J13] -t (t2 -t )
2 1 12 2 1

"-; 11 t 211 2 + 11 t 1 11 2 2(t1,t2)

11 x2 H
2p2 2.pi

t2)

the first two of. the three terms of the last expression being directly

observable. But

Similarly,

(ti,t ) = (t.i ,x
2
-e

1

= (t
l'
x
2

) since (t1,e1) = 0.

(t
1
,t

2. +

).= ("lc ,t
2
).

2 3 -I
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2 "4\
To get*:a. lower bound for p (t

2
-t

1
t - t

1
), we need an upper

12
bouyd of the denominator Ht2-tih,, and hence-a'lower,bound of (ti,t2),

for this occurs with a negative sign in expression [13] for
2
-t

1
11

2
.

Since (ti,t2) is equivalently equal to (ti,x2 and to (xl,t2),,,--as sh6wn

above' (but not equal to (xl,x2) unless the "universally uncorrelated

measurement errors" assumption is invoked), we must use min ,Q,.b.(t
1
,x

2
)

t )}--i.e., the smaller' of the lower,bounds of (t x
2
) and

(x
1
,t

2
)--to replace (t

1
,t

2
) in expression [13].

The foregoing completes our outline of how' a lower bound of

2
p (t2 -t1, t

2
-t

1
) may be computed. Details of the computation are carried-

,

out by a computer program.`' We no turn to a numerical example utilizing

real data. This example not only illustrates the actual calculations

for the above developments, but shows how we may introduce other pre-

dictors besides the pre- and post-tests themselves in order to increase

the accuracy of estimating t2 -tl.

NUMERICAL EXAMPLE
4

The data fOr this example are from an unpublished study by

Misselt (1973), in which (among other things) the Metropol#an Achieve-

ment Test battery was administered to.a large group 6Y third graders in

the Champaign, Illinois school district in the schoO,year 1971-72.

The grout) was retested in 1972-73 as fourth graders. `.-Only the Reading

test in the battery is considered below,.and only the scores for 624

4 Available on request from the authors: This program accommodates

three other variables besides the pre- and pOStItests'themselves

2 3
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pupils, who took the test both in 1971-72 ("pretest") and in 1972-73

("Posttest") are utilized. Besides the pretest and posttest scores\n

reading, IQ scores were available for these pUpils, so IQ was used as a

third variable in the computations that follow.

We therefore extend Eq. [2) to
ti

[14] t
2

?",

1
= R(t -t 1 c 3 )

= (t
2
-t c

1
)c

1
+ (t

2
-t c

2
)c

2
+ (t -ti

2 l'

where c1, c
2
and c

3
are constructed by the Gram-Schmidt procedure as

cl IIx2:xlII
I x'21:xi

c
2 = {x2- (x2,c1)c1 }/11x2-(x2,c1)c111

c
3
= {x

3
-(x

3'
c
1
)c

1
- (x

3
,c

2
)C

2
Mix -(x

3'
c
1
)c

1
-(x

3
,c

2
)c

2

//

_Eq. [12],for the Squared multiple correlation, p
/2
.(t--t

1
,

L 1
), is

L

accordingly generalized to

2

2 -/---,
a
2
(t2-ti,c1) 62 -t

1,
c ) a (t

2
-t

1
c
3
)

[15] 2

.. ,1(,t2-t11.12
12 11 t2-t1 11

Summary statistics for thOlthree tests and some intermediate

results necessary for calculating p
2
(01, t2-t1) when the assumption

p(e1,e2) = 0 is invoked, and its lower bound when this assumption is

not used, are shown-in Table 1.

23
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Table 1. Intermediate results needed for calculating p
2
(t

2
-t

1
, t

2
-t

Mean s.d. P.

1--p . ,

Ni- .1
(N = 624)'

Reading Pretest

Reading Posttest

IQ

(X1)

(X2)

(X
3
)

27.82

35.12

104.24

10.92

12..41

18.75

.95

.95

.00895

.00895

Covariance matrix for X1,
1,

X2, X3:
2' 3

119.19 113.02 137.76

113.e2 153.90 163.67

137.76 ; 163.67 351.51,

The covariances (ti,ci); [j=1,2;i=1,2,31, under the assumption that

'(e e
2
) -

.0304

-4.8384

10.3876

13.4378

.2391

-2.2270

Normalizing divisors for c1, c
2

, c
3

:

K1 = 11x 2-x111 = 6.8592

K2 = = 10.8801

K3 = 11x3- (x3,-c1)ci-(x3,c2)c211 = 12.'9970*

Based on the intermediate results displayed n Table 1, we

-first calculate the bounds for a(ti,x2) and a(t2,x1),-and note that when
%

IL
-the assumption 'cl(e e

2
) = 0 (an instance of the "universally uncorrelated

beasurement errors" of classical test, theory) is invoked,

2 3 7



'ci(t1,x2)**=- ci(t2,x1) = ci(xi,x2).

From inequality [11a] we get

113%02 - (10.92)(12.41)'(.00895) (ti,x2) 5 113:02

+ (10:92) (12.41) (.00895)

or

111.81 5 (ti,x2) S 114.23

9-20

I.

when the traditional assumption a(e e
2
) = 0 is not invoked. Whereas

a(ti,x2) = a(xl,x2) = 113.02

When we assume (el,e2) = 0

f
In this numerical example, since pi =

.

p2 (=.95), the bounds for

a(t2;x1) are exactly the same as those for a(ti,x2), as is evident by

comparing inequalities [11a] and [1lb]. This will not be true in
0

general, when p
1

p
2

. Of course, under the classical assumption that

a(e e
2
) ='0, a(t

1
,A

2
) and u(t

2 1
) are always the same, both being

6

equal to a(xl,x2).
.

Before 'calculating the lower ,bourid.fot p(C2-t1, t2-t nder

the-liberalized assumption of "homogenetArof error covariances" for

parallel measures, let* calculatt the exact value of,p(cil t2-t1)

which the classical assumption of.universally uncorrelated measurement

errors purports to enable us to get. Note that, under this a:$umptio4

$
the common denominator of the fractions on the right-hand side of Eq.

[15] can be exactly computed from Eq [13]:

\
4
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11't2
-t 1112 = 11x 112p 2

,+
Ilx

1
112p

1
2(t

1 ,t 2)

= (153.90) (.95) + (119.19) (.95) (2) (113.02)

= 33.3955.

Then, using the intermediate results displayed in Table 1, we get the

following values for the three terms on the right-hand side of Eq. [15Y,\---

whose sum should equal p
2
(t2-t1,

First term (reliability-of X2 - Xi = .7098

Second term = .2781

Third term = .1821

TOTAL 1.1705

This result is of course, absurd since p
2
(t2 tl, t2-t1) cannot exceed

unity. This is but one instance of the various difficulties that arise

from the traditional assumption of 'universally uncorrelated measurement

errors. (See K. Tatsuoka, 1975, for other examples.)

p(t
2
-t

We now turn'to the calculation of a lower bound for

) under the liberalized assumption of homogeneity of error

covariances for parallel measures. Table 2 shows the intermediate

results necessary for this purpoSe, in addition to or in lieu of the

values displayed in Table 1.

Table 2. Intermediate results needed calculating a lower bound for

2 l'
t
2
-t

1
) in the absence of the assumption p(e

1
,e2 ) =.0

Lower and upper bounds for a(t.i ,c1.):

-N,

- .1466,

-5.0151

10.1793

13.3410

.1911
4-,

-3.0491.

.2071411

-4.6615

10.5960

13.5347

.2871

-1.4050

.

31
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Table (Continued)

Lower and upper bounds for Ilt
2
-t

1
112 from Eq. [13] _and the bounds for
-)

(t
1
,t

2
):

30.9687 5_ II t
2
-t 1112 S 35.8202

Based on these intermediate results, we find the lower-bound

values of the three terms on the right-hand side of Eq. [15] to bel

First term (reliability of X2 - Xl)

Second term ?. .2136

Third term . 0711

2
p (t

2
-t

1'
t
2
-t

1
) .8538

Hence, a lower bound of the multiple correlation p(t21, t2-t1), a

measure of the accuracy of estimating t2 -.t1 by the method proposed

in this chapter is,

1:1113T§ .9223.

SUMMARY

A mector-geometric hnd operator-analytic approach to deriva-

tionsallsi-proofi-in test theory, first explbred by K. Tatsuoka,in her

,..

dissertion (1975), was applied in this chaptpf to the problem of

estimating th true change from pyre- to post-tests. One advantage of

this approach i that it renders feasible hitherto intractable mathemat-

ical deve4ments in the absence of the traditional simplifying assump-

.,,tion that error scores are universally uncorrelated.

. .

That this assumption is inadmissible as an universal postulate

2k

ti



has'been argued--with examples of "paradoxes"

K. Tatsuoka (1975). Linn_and Slinde have also

4 of this Report, "that--ccpecially in the case

are under consideration--the assumption of uncorrelated errors is un-

9 -23

to which it leads-,by

pointed out, in Chapter

when pre- and post-tests

justifiable. 7-
4

Upper and lower bounds for estimated true change were developed'

without the uncorrelated errors assumption, but with the less restrictive

assumption that the error covariances of a set of parallel tests with

an external variable are all ecitial (the "homogeneity of'error covariances'

assumption.) In addition, a lower bound for the multiple correlation.

P(t 2 t t
2
-t

1
) between estimated true change and actual change was

derived. It was also noted that, under the traditional uncorreiated,
.4

errors assum ption, not only a lower bound, but the actual correlation

value, could be computed. When this was done for the numerical example

(using real data), however, a value exceeding unity was found--thus

providing another piece of evidence of the inadmisgibility of the

universally uncorrelated errors assumption.1- With the relaxed asi

sumption, a reasonable and useful lower bound (.9223) was obtained.

ti

41s

2 1

4
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APPENDIX A

COMPARABLE READING TEST SCORES: A REVIEW

OF THE ANCHOR TEST STUDY.

4

fit Bianchini, J. C. & Loret, L. G. `,Anchor Test Study: Final Report.
Report and Volumes 1 though30; available as ERIC Documents
ED 092.601, through Ep 092 631.

Bianchini; J. C. & Loret, P. G. Anchor Test Study Supplement Final
Report. Volumes 31 through 33, available as ERIC Documents.
ED 092- 632 through ED 092 634.

The prospect of reviewing the mammoth report of the Anchor Test
Study (ATS) initially struck me as an overwhelming task. With the
limited space in my office it would have been easy to refuse the
request to review the ATS had it not been for the availability of
microfiche. Although I haven't seen it in that form, hard copy of
the 34 volumes of the final report requires about 8-1/2 feet of
shelf space (Loret, 1974). An acquisition of that magnitude would
require me to part with more of those dusty "should read sometime"
items on my shelves than my conscience would allow. For better or
worse, however, modern technology which made possible the production
of the over 15,000 page report containing more than 8,000 computer pro-
duced tables and graphs in the first place also deprived me of my
best alibi by reducing the report to a microfiche file that is only

' 2-3/4 inches thick.

Fortunately the task of reviewing the ATS for this journal was
greatly simplified by the fact that a very good review of the ATS
has already appeared in another NOME publication. The summer 1973
issue of Measurement in Education was devoted to a description of the

'study (Jaeger, 1973). Jaeger's description appeared more than a year
before the full report was released and before the supplement study
involving n eighth test was available. In addition to having
directed t development of study specification, he had available at
that time,' 11 but the three volumes that comprise the supplement
report. -Indeed-the 31-volume final' report of the original study
WAS delivered toUSOE in December, 1972. The delay of almost two
years between delivery of the report and its release is unfortunate
because the value of norms certainly does not improve with age.

Jaeger's description of the ATS provides `a good review of the
history of the study, the planning and condUct of the study as well
as the major outcomes of the study. A more recent overview of the
study has been provided by the project director, Peter Loret (1974).
Due to the availability of these two descriptiOps of the study I

-):

11 try to keeprmy comments about the history and study procedures
latively brief.

t "N
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OBJECTIVES AND BACKGROUND OF THE ftirmit

"The Anchor Test Study had two major objectives: to provide 'a

method by which one may translate a child's score on anyone of
seven widely used standardized reading tests into a score'on any of

the other tests, and to provide new nationally representative norms
for each of these seven tests" (ATS. Final'Report. /roject Report,

p. 1). This was subsequently expanded to eight tests ,but otherwise
this concise statement of objectives needs no revision. Certainly

there were other lesser objectives such as the empirical inyesiiga-
dons of different eqUating techniques, and obtaiping intercorrela-
dons among the various tests, but these are mi r in comparison to

the two major objectives. .

As noted by Jaeger (1973) and by Lor (1974) the concerns that

led to the ATS have a long history. Du concerns about the adequacy
of national norms provided by test publishers and the desirability of
being able to compare scores obtained on one test with those obtained
on another have been with us for a long time (see for example Cureton,

1941; Lennon, 1964b).

The differences in sampling procedures that have been used by
different publishers were clearly documented by Lennon (1964b). Even

without differences in initial procedures, however, the relatively
low rate of cooperation among selected school's that is enjoyed by
publishers would make the representativeness of the norms questionable.
The'lack of representativeness and comparability creates difficulties
when schools or school systems chrange from one battery to another or
when an attempt is made to interpret scores of transfer udents.

Such difficulties, however, were not suf cient to motivate ,ma17 '

norming and equating study across several publishers.

There are many technical and political obstacles to equating
tests.acrsss publishers (see Angoff, 1964; Flanagan, 1964; Lennon,

1964a;%Lifiquist, 1964). A\strong motivation was needed to attempt
to overcome ;hese obstacles.", This motivation was provided by the
increasing de and Iv evaluations at the state and national level
that occurred au+4 the latter part of the 1960's. Early attempts

to obtain achievement test data for the national evaluation of

Title I, for example, were faced with a hodgepoct of different

tests with different norms and different scales (Lo t,,1974).

A major technical problem iri equating tests of different pub-

lishes is that the tests may .not Measure the same characteristic.
Angofe(1971), lists two reqUirements for equating, the first, of

which is that the "..instruments question must measure the same

characteristic"'(p. 573). With diffgent content-ipecifications
used by different publishers, the satisfaction pf"this. requirement

seemed dubious. Interporrelations among the tests obtained in i

pilot study were found to be high enough, however, to make the
eqUating seem worthwhile (Jaeger, 1973).

i-
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METHODOLOGY

The study was designed with two major phases: the norming phase

and the 'equating phase. The norming was designed to provide national

norms for individual pupils and for.school*means. The norms were.,

developed for the vocabulary and tFe reading comprehension subtests
as well as total reading for the Metropolitan Achievement Test, 1970
edition (MAT).. The data were collected in April'1972 at grades 4,
5 and 6 and hence provide spring norms at those grade levels.

The sampling design for the norming study was ceeloped by Westat

I

Research, Inc. The design called for a stratified random sample 04-4-0,nation's940-schools. The norms, to be as representative of the nation'
4th,.5th and 6th-grade students as possible and great care and effort'

'was devoted to the design of the sample. Frimary-sample schools were
selected, and for each school in the primary sample five schools with

. the same slampling characteristics were randomly selected as secondary

1
sample schools, to use in place of non-participants in the primary

.
f1J*

tsamples Due to careful planning and advance work with ,the Council Of 1
. 'Chief State School Officers and others,latively little reliance had

to be placed on the secondary-sample schools: (838 primary sample nd '

80.sepondary sample schools with a total of approximately 65,000 p pils

actually participating iR the study). The high participation'rat 1.6

a real tribute to the many people, involved in the planning and to duct
of the study. It 'also greatly enhances the value of the norms by mini-

mizing tilt ias due to non-cooperation and is undoubtedly the single '

most important *stinction of the study norms in comizaison to the

publishers' norms.

The equating phase of thestudy was designed to provide raw soor
equivalences for total reading, the vocabulary subtest and the readin
comprehension subtest of seven major tests batteries. Subsequently a

eighth test was equAted\ to the original seven in a study conducted in

the, spring of 1973. TheNtests,'forms and the 14vels used at pach

grade level are summarized ift Table 1. 'By equating of each of'the other
tests \to the MAT (the anchor test) the norms obtained for the/MAT were

translated to norms for each ofthe Other tests.
.

1 ,

/

The sample characteristics for the equating phase are less orUcial
than in the norming phase of the study but again this phase Of they'

study achieved a very high participation,rete. Usable equdting data
were obtained in April 1972 for a total off almost 135,000 students

for the original seven tests. To equate a to the anchOr test

and through it to the otherIsix tests, usab a were obtained for

another 14,400-studentb in April 1973. . , \

J
,

,,,,.

i

The design of the administration of tests in the equating hase

elled,for a sample of students to take each pair of tests in :.rder

',AB and sample in order BA. A schematic-representation of stke.

equatink design is .shown in Table 2. As can be seen in Table 2, in

aciption to the pairing of,each test with test in both
li\\

2 4,)
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Table A-2

Schematic Replistsentation of Equating Study Design*

Test Administration Order (April 1972)

Test 1 ' 2 3 4 5 6 7

I

1. CAT

.

1-1*

1*-1

2-1,

_

1-2

2-2*

2
*
-2

k

1-3

2-3
A

'2-4
._-)

1-4

-4

_

1-5

2-5

1-6

2-6.

1-7

2-72. CTBS

X

3. ITBS

- -

3-1 3-2 3-3*

3*-3

3-4 3-5 3-6 3-7

_

4. MAT 4-1 4-2 4-3
*

4-4

4&-4

475

......,

4-6 4-7

,
/

5. STEP . .5-1 5-2 5-3. 5-4 5-5
*

,

5*-5

5-6 /27'
/

..
/

/

, ,...

4

6. SRA 6-1 6-2 6-3. 6-4 6 .-
2'7 *

6-6

6*-6

/

6-7

7. SAT 7-1

4

7-2

.

7-3
,

7-4 /7-5 7-6 7-7*

7*-7

Test Administration Order (April 1973)

Test

8. GMT 8-8* 8-4

8*-8

4. MAT 4-8

Indicates an alternate form of the test

24 7
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1

possible orders, each test was also _Paired with its own alternate
form in both an AB and a BA order:- Thig-Tfewided for parallel-form
reliability estimates for each test.

Eight combinations of two equating method (linear and equi-
percentile) and four equating procedures wing
diffOrent subsets of the data from the,d gn shown in Table 2) were
used ,to equate ch pair of tests. T ese combinations of method and
procear compared to each other and also evaluated in terms

of estimated errors of equating. 'Based on these results, the equi-
percentile method and a procedure that involves pooling all the data
for a given test for each order of adMinistration and then averaging
the equating results were found to be most satisfactory.

FollOwing,the equating of raw scores on all of the tests the
percentile norms for individual pupils and for school mean were
obtained from the MAT norming study results. Comparisons of these
norms to the norms provided by the publishers were then prpvided.
Finally, the adequacy of the equating for several subgroups of stu-

' dents was investigated.

THE REPORT

Despite the voluminous nature of the ATS report readers should
have relatively little difficulty in obtaining desired information
from it regardless .o£ the level', of detail that is required. The'

needs of most users are amply me in a 92-page separate report
entitled "Anchor Test StUd'y: Eq'ivalence and Norms Tables for
Selected Reading Tests" which is available from the U.S. Government
Printing Office as stock number 1780-01312 at a cost of $1.90.
This.report contains a'brief description of the study and the primary
tables that resulted from the study. The tables are divided:into

four major equivalency tables, -tables of individual
scorehorms, tables of school mean norms, and a table that aresent'S
a comparison ATS percentile ranks with the corresponding percentile
ranks from the publishers' norms. ,./.___

J
For the reader who desires more technical detailethe two volumes

containing the "project reports" will usually. ffice. Theses,
volumes which have the catchy titles, "Ancho Tests Study. Final

Report. Project Report" and "Anchor Test tudy Supplement. ,Final

Report. Volume 31, Project Report" m e obtained from ERIC as

documents ED 092 601 and ED 092 632 respectively. These reports

contain detailed descriptions of the study methodology including the
sampling, estimation'and equating procedures. They also contain a

discussion of the major results and technical evaluations of the study

results. At this level the reader may also want to skim-through some
of the tables and graphs in Volumes 2 throtigh 27 as well as those in
30, 32 and 33 to evaluate the adequacy of the summary and description
of results in the project reports. I think that a small ssmpling of

24 8
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those tables and graphs will impress most readers with the thoroug
ness and /scrupulous accuracy of repotting in the project reports.

For anyone who wants to dig beyond the pioject reports I can
only say that the tables and graphs are available through ERIC in
quantitites that should satisfy even the most heary of appetites:
Volumes 2 through 4* provide,equating tables for the 8 combinations
of methods and procedures e-tn-addl-ti-on to estimated errors of equating,
and test for grades 4, and 6 respectively. Vol
umes 5* through 10 provide graphs which compare the equating lines
for different procedures and for different equating methods at each
grade. Volumes 11.through 21 present subgroup equating tables (boys,
girls, 3.IQ groups, 3 racial groups, and 3.,sEs groups). Graphs com
,paring the subgroup equating results to each other and to those for
the-total group are presented in Volumes 22 through 27. Volume 30
paesents a comparison of the ATS norms with those prov {ded by the test
pyblishers, and reports conditional errors of equating, (i.e., the

xstandardidevjation of observed scores,on test j around the equivalent
score Orf test j for each'value of test j') quality .control results
andAdormation on the convergence of equating iterations.

The information in the first 30 volumes and in the project report
is all concerned with the 7 reading achievement tests that were in
the, original study. (See Table 1.) .The Supplement Report (Volunies 31
through 33) gives results of a study conducted a year after the
original study for the purpose of equating an eighth test (the Gates
McGinitie) to the original seven.

7

MAT Norms 4/

SELECTED RESULTS

The norms that were obtained for the reading test of the MAT are
probably the best national norms that have ever been obtained for a
standardized achievement test. As already noted the school cooperation
rate was exceptional. The sample design and yeighting procedures were
of very high technical quality.

*
Although it is unlikely to cause anyone any real difficulty, it
might be noted that the tables that belong in Volume 4 have been
inadvertently put on the Volume 5 microfiche (ED 092 606) under --
the title "Equating Procedure Comparison Graphs, Grade 4".
The graphs that belong in Volume 5 are, to be found on the ,
Volume 4 microfiche (ED 092 605) under the title "Equating
Tables, Error of Equating and Correlations, Grade 6".

24
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Test Intercorrelations

Despite many' reservations about the equating of reading tests with
different content specifications the tests were all found to have high
intercorrelations. Generally, the correlations for each test with
each of the'other tests fell little short of the correlation of that
test with #s alternate form. When parallel-forms reliability
estimates were used to obtain disattenuated correlations among the
tests, very 'few of the correlations fell below .95, which is often
useeas an admittedly arbitrary cutoff for purposes of equating.
Averaging across order of presentation, the disattenuated correlations
for pairs of tests below .95 are listed in Table 3. All three cases
at grade 4 involve the MAT, all four at grade 5 involve the SAT and

. all four at grade 6 involve the STEP. None of the disattenuated and
averaged-over-order correlations among reading tests fell below 439
and the tests with low correlations changed from one grade level to the
next. Although I agree with the judgment made by the, investigators
that the correlations are sufficiehtly high to justify the equating
in all cases one is left with a curiosity about the tests that are
involved in the "low" correlations at each grade.

In the case of the STEP test at grade 6 it may be that the "low"
correlations are attributable to the difficulty level or-STEP being
somewhat out of phase with the other tests. Among the 7 tests in the

'original study for which the test intercorrelations are available, STEP
is-the only test that doesn't change levels during-the 4th to 6th
grade interval and by the spring"of grade 6 STEP is an easy test rela-
tive to the other tests. Partial support for this interpretation can
be found in Lord (1974). Despite thhigh intercorrelations of the
tests Lord found the 7 tests in the original study- to have fairly differ-
ent patterns of r"e"stive- -efficiency at different percentile ranks.
SIEP-AS the only test to have higher relative efficiency than the
MAT's at low percentile ranks but lower relative efficiency at middle
and high percentile ranks.

Error of Equating
a

An important aspect of the equating design wasp the provision that
made possible empirical estimation of the,error of equating. This is
accomplished 'by the use of'McCarthy's balanced half-sample replication
method (1966). The equating design consisted of a set of eight bal-
anced half-samples. These half-sample replications were used to com-
pute the root-mean squared deviation of the MAT equivalent scores'for
each half-sample replication about the MAT equivalent scores for the
full sample. These errors of equating were computed for each of the
eight combinations of methods and procedures and provided a means of
judging the relative quality of the methods. The estimated error.of
equating also provided a basis for judging the overall adequacy of the
equating for each test. For the preferred equating procedure and
method (i.e., the average'of procedures' 1 and 2 and the equipercentile
method) the estimated error for all tests was generally less than one

ti



Table A-3a

Pairs of Total Reading Tests with bisattenuated Correlations

Averaged over Order of Presentation Below .95

(Value of correlation reporteliiin parentheses)

se, ,`,------

GradeGrade 4 Grade 5

MAT-CAT (.94)

MAT-ITBS (.93)

MAT-SRA (93)

SAT-STEP S.89) STEP-CAT V)
'N.

SAT-CTBS (.92) STEP (.91)

SAT-CAT (.94) STEP-ITBS (.92)

SAT-SRA ,(.94) STEP-SAT (.93)

2 o
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raw score point (substantially so in most cases). The only major

exception to this is for test scores in the "chance" range. Based

on these error of equating estimates, the,,Aquaiing would seem quite

satisfactory for most practical purposes.
-04

Comparison to Publishers' Norms

Once the tests were, equated the norms obtained for the MAT were
used to convert equivalent raw scores on all other tests to percentile

ranks. Thus, the anchor test norms can be used to obtain na
representative norms forall of the tests. With norms for all tests

in hand, the next natural step was to 'compare the ATS norms to the

norms provided by the publisher. The maximum difference between the
ATS percentile rank (PR) of any test score and the PR of that same
score on the publisher!s norlms is listed in Table 4 for each test at

each grade. Also summarized in Table 4 is the typical sign o the

ATS PR minus the publisher'S PR for, scores above and for scores below

the median. 'A plus sign'indicates that a given raw soore would
typically have a higher PR on the ATS norms than on the publisher's

norms. In other words, a given score would appear better according
to ATS norms than-publisher's norms where there is a plus sign. The

converse it true of a minus sign and a zero indicates- that there is

not a consistent difference in that the PR's are essentially equal.

As can be seeriin Table 4, the maximum difference is relatively
small for most tests at most grade-levels. The SAT, and to a lesser

extent the GMT (grades 4 & 5) an till-MAT (grade 4).are notable

exceptions to this statement. The differenCes for those tests are

substantial. It may be of interest to note that the GMT and the SAT

are the oldest of the eight tests. As indicated in Table 1 the SAT

and -GMT used in the ATS. were both 1964 editions,. It should also be

noted that since the ATS was undertaken a new edition of the SAT has

been published. (Harcourt Brace Jovanovich, 1973). Thus, the large

differences for the SAT are somewhat irrelevant., The *other large dif
ference (MAT grade 4) may be attributable to the fact'that separate
answer sheetswere used in the ATS whereas'the publisher's norms at

grade 4 alle based on scorable test booklets.

For use with the interpretation of individual scores most dif
ferences between publisher's and ATS norms are not large enough to

cause pfisoblems. If someone is interested:p evaluating trends for
groupsTI students, however, changing from publisher's norms ro ATS

norms might make quite a noticeable difference. To get a better fix

on implications of changing to ATS norms for grpup data it would be
desirable 'to have a table-like Table 4 showing the differences :

between ATS school mean norms and publishers' school mean norms.
all publishers provide such norms, however.

Subgroup Results

The tests were not only equated for:the total sample but also

for eleven special suhgroups resulting"from four breakdowns of the

25 A
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Table A-4

ummary of Comparisons of ATS Norms

with Test Publishers Norms

A-11

Test Grade

Maximum Pifference
in Percentile Rank .

Typical Sign of ATS
Minus Publisher's Rank

Vocabulary Comprehension Total Below Median Above Median

CAT 4

5 ,

6

2

3

4

3

' 2

2

3

3

3

-- -

-

-

0

0

0

CTBS 4 4 2 3 - 0

5 3 3 3 - +

6 4 6 5 , + +

Our 4 3 10 * 0 +

5 3 8 * 0 . +

6 3 C4 * 0 0

ITBS 4 5 5 * + +

5 6 7 * + +

6 6 7 + 4!, +

MAT 4 3 3 2 + 0

5 1 3 2 3 .

4-
0

6 3 3 2
,4' 0

STEP 4 * * 5 +

5 *
,

5 + +d-

6 * * 4 + +

SRA 4 5 3 3 +
- 4-

/

/

5 . '5 2, 3 .4' +

6 4 2 2 + +

SAT .

t.-

4' 8 11 1-1 . *

/
5 15 12 * + +

6 184' 16 -* + +

*
Publisher's norms not provided.
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sample on the basis of sex, SES, IQ, and race. For the sex break-
doWn no major differences were found. The results for the three IQ
grou 'ps showed some differences but generally the differences were
small except in regions where the data were relatively sparse. Thus,

the total group equating tables appear satisfactory regardless of
sex or IQ level.

The results of SES and for race were less similar. There was a
consistent tendency at all grade levels for the high SES children to
score higher on the CTBS than on any of the other tests and for low
SES children to score lower on the SRA than any other test.

Marked differences in equating lines were also found for sub-
groups formed on the basis of race. This is particularly true for
the Spanish-surnamed sub-group which tended to score consistently
lower in the top part of score range on the ITBS and SRA than on the
other tests. The deviations for the black sub-group were not 4$
large as for the Spanish-surnamed sub-group. Furthermore the devia-
tions for the black sub-group were not consistent over all grades.
There is some tendency at the upper score ranges, however, for blacks
to score higher on the CTBS and SAT than on other tests at grade 4
and to score higher on the ITBS than -on other tests at.grades 5 and 6.

Although 'the sub-group equating results are undoubtedly the most
provacative of the entire study it must be.noted that "....the study
was not explicitly designed to yield stable equating relationships
for the minority sub-group children" (ATS. Final Report. Project

Reportp. 196). Thesample size for the minority groups is extremely
small in the parts of the score range where the largest differences

were observed. Hence, the advice of the project report against using
the racial sub-group eqUivalency score data is probably sound. But,

this is an area of concern that del---etvesnia-re intensive study and such

work is currently under way (John Bianchini, ersonal communication).

UTILITY

The Transfer Student'

In the announcement of the ATS contained in the fall 1974 issue of
ETS.Developments (ETS, 19745 a hypothetical girl named Mary is described.

Mary and her pardnts moved. Her "new" school uses the ITBS but her

old one used the STEP. Thanks to the ATS, Mary's new teacher can con-
vert Mary's raw score on the STEP Reading to an,equivalent raw score

the ITBS Reading. It might be added that either of these raw scores

can be interpreted in terms of the national norms, provided by the ATS.

Althdligh the above claim is true it assumes that the teacher will,
(1) know abdut the ATS and (2),have the equivalency tables available.
Both of these assumptions seem questionable to me. A major effort

would be required'to make this type of information broadly known by

Nachers. One way of accomplishing thee goal might be for the publishers

264
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to do the. conversion to ATS percentile ranks for the users, and indi-
ate the tests for which the percentile ranks are equivalent. With-

out such heavy use by publishers, however, I doubt that Mary's teacher
would know how to convert Mary's score even assuming that she received
raw scores rather than grade equivalents or some othet standard score

or Mary.

The need for publisher involvement to make the ATS results maxi-
mally useful prompted me to write to the six publishers that produce
the eight tests involved in the ATS to ask about their plans. In the

fairly,limited time between my letters to publishers and the writing
of this review i received responses from four of the six publishers.
None of these four publishers plans to routinely provide ATS norms

to their users. But, they all plan to make ..the information about the

,study available by infori-ming their sties representatives and/or
aescribingthe study 4n their publications. ,

The liMited effott on the-part_o_f_publishers to make ATS norm and
equlting results known'may be as much as---etkuld be expected of the

publishers. It seems doubtful to me, however, that the planned level
reffort will be sufficient to get a very large segment of the test
ers (including Mary's teacher)".to use the_ATS results.

By way of explana ion of their Exalted plans'to use the ATS
tesillts the publishers cited several practical limitations of the

liesUts. These limitations included: (1) the lack of data for tests
other than reading, (2) the lack of data for grades` other than 4, 5
and 6, (3) the lack of data for the publisher's alternate forms, and
(4) the lack of scaled scores. All of these factors were viewed as
limiting the practical value of the ATS results for their users.

hanging Tests

otIls are sometimes slow to switch from one test to another

becadse o experience with one test and the comparative value of the

historical data. The ATS results make it possible to make a change
and still have the ability to compare current reading test results
to historical results in terms of the ATS norms. Again this assumes

that the knowledge of this capability-is availableto the school.

Measuring Change

Another use that has been usggested for the ATS data is in the
measurement of change where one publisher's test isused at time 1
and another publisher's test at time 2. Presumably this could be

'done in terms of percentile ranks. This might be appropriate for

gauging the direction of change in relative standing as suggested

by Coleman and Karweit (1970) but not for estimating the m gnitude

of change. There are major differences between change as m aured-
in terms of.percentile ranks and as measured in tests of a ertically

equated scale such as grade equivalents, (see for example Linn, 1974).

2 5 .5
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The ATS was not designed to vertically equate tests that change
levels from one grade to the next. It does provide,some'indirect

information for this purpose, however. For example, the same level
of the CAT was used at grades 4and 5 but different levels of the MAT
were used at those grades (see Table 1). By ulihg the CAT equiva-

lencies of the MAT it is possible to convert the7MAT Elementary Level
Reading srores to equivalent IntermOiate Level Reading scores. There

are a number of other tests with a'constant level over grades 4
and 5 that might be used for this purpose aid for the best estimate
it would be desirable to use some sort of combination of the various
estimates. For purposes of illustration, however, I selected a few,

scores of the CAT at grade 4 and noted the equivalent Elementary
Level MAT scores. The same CAT scores were then used at grade 5 to

, find the equivalent Intermediate Level MAT raw scores. These scores

, are shown in Ta'ble 5. Finally, the publisher's norms were used to .

convert the equated MAT Elementary and Intermediate raw scores to

trade equivalent scores. The resulting grade equivalent scores are

also reported in Table 5.

If the two columns of grade equivalent scores in Table 5 are com-
pared some non-trivial differences in the grade equivalents can be

observed. The largest of the differences in corresponding grade
equivalents shown in Table 5 occurs for MAT raw scores that are equiva-
lent to a CAT raw score 9f 60. At this level the grade equivalent
scores are 6.6 at grade 4 and 7.4 at grade 5 for a difference of
.8 grade,equivalent-units which would presumably be interpreted as

almost a "year's gain." Throughout the range the grade equivalents
tend to be larger at grade 5 than at grade 4.

The above analysis in terms of grade equivalent scores is admittedly

rather crude and does not begin to scratch the surface of the number of

possible comparisons of this type that might he made. It is not in-

tended to imply that growth should be, measured in terms of'grade equiva-

lent units, in fact, I have elsewhere argued to the contrary (Linn,

1974). F.urthermore, the results in Table 5 may be an artifact of

the nature o grade equivalent scores and they are not the score

unit to use in equating. But, the Arson who is interested in measur-
ing change needs some sort of common score and will usually want some-

, thing besides percentile ranks. If so, some form of the publisher's

scaled scores is still the natural recourse. The above analysis sug-

gests that the results of, such comparisons may be very misleading at
least if grade equivalent scores are used.

Aggregation of Results from Vveral ests

Possibly the most",significant use of the ATS may come from making

it possible for a governmental agency, to aggregate reading test scores

across several tests. This is a potentially important use in that it
conceivably could greatly reduce the need for special test administra-

tions for information purposes at the state or national level. As noted

previously programs such_as Title I ran into considerable difficulty in
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Table A-5

Total Reading Equivalent Scores on the MAT

Elementary and Intermediate Levels
4

Equivalent MAT Raw Scores
and Corresponding Grade Equivalents

. -

A-15

VI

Level 3 CAT
Raw Scores

(Grades 4 & 5)

Elementary Level (Gr. 4) Intermediate Level (Gr. 5)

Grade-
Equivalent Raw Score

Grade.

EquivalentRaw Score

80 94 9.9 . 91 94.8

70 89 8.4 76

60 84 6.6
.

' 63 7.4

50 '76 5.2 51 5.5

40 63 3.7 39 4.4
A t

30 45 3.2 29 3.5

20 \ 26 2.3 r 20 2.6

,10 12 1.3 8 1.4

et.
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trying to make sense out of test score date'froma wide variety of

tests. State agencies have had similar problems which has lei to the

use of single tests for statewide testing in some cases. Thanks to

the ATS results schools should be free to select their own reading

test from among the eight i olved in the ATS. while the capability'

of aggregating data at th district, state or national level is still

maintained.

I would not find it surprising aggregation is the main use

that is made of the ATS results. After all, it was the desire to hbVe
this capability that made the ATS a reality after over 30 years since'
Curetoti (1941) made his plea for an anchor test study.

LIMITATIONS

In my opinion, thewATS is an extraordinarily sound study from a

technical point of view. Most of the limitations, some of which have

en impliCitly noted move, come about more from the scope of the -

dy than from the implementation. There are three rather Obvious
limitations of this nature that I would like to.mention at this stage.
These are (1) test content, (2) grade levels, and (3) the absence of

vertically, equated scaled scores.

Although reading would probably be most people's first choice if
a single content area is to be involved, there are obviously other.,

important content areas. Many would argue that even a complete achieve-
ment,test battery puts the focus on much too narrow'a range of educa-

tional goals: By making it possible to aggregate only for reading tests

the emphasis becomes even narrower, Although equating 'of tests in

other content areas may be desirable it would be unreasonable to expect

one study to do everything and the ATS is already a giant. Furthermore,

the technical feasibility of equating in other areas may be limited due

to less similarity in what is measured in content areas other than,

reading, from one test battery to the next.

The -choice of grades 4, 5 and 6 was partially based on high test

usage at those grades. They are a reasonable starting place but the

same problems that prompted the ATS remain unresolved at other grade

levelf.

The absence of an effort to vertically equate tests that change

levels in grades 4, 5 and 6 and create a common scaled score is

A
regrettable from my perspective. Without doing this the test user

who wants to analyze scores across levels must.revert to the publisher's

horms.' As good 'as. the ,publisher's norms may be, they do not live up

to the ATS standards.

I also think thaf the absence of a common scaled score is a missed

golden opportunity. By creating a new scaled score that is common to

all tests it might have been possible to reduce tine diversity in types

of scaled scores which confuse users and more importantly to speed the



demise of some undesirable types of scores. I inkthis way the ATS

might have helped achieve standard D5.2.3 of Ate 1974 Standards for

Educational and Psychological Te9ts (APA, 1974). According to

standard D5.2.3 "Interpretative scores that lend themselves to gross

misinterpretations, such as mental age or grade-equivalent scores,

should be abandoned or their use discouraged. Very Desirable" (APA,

1974, p. 23). The absence of scaledcoi-eis could be rectified

through secondary analysis of the data. The data that are require

are available.

. A final limitation tha I'd like to mention has to do with time

rather than scope. As note above, one of the test batteries (The

' SAT) has already been revise This is apt.to happen to several of

the others within the next 5 r 6 years. In view of this it seems

unfortunate that theie was delay of almost two years between the

completion of the final report and its release by USOE.'

CONCLUDING REMARKS

The &S is landmark study. It is a tribute to careful planning,

superb execution and high technical capability. The goals of obtain.-

,ing representative norms and equating several widely used reading tests

at grades 4, 5 and 6 were clearly accomplished. So too, were the

several minor goals: The results of the study should prove to be of

considerable practical value especially to governmental agencies that

want 't-16aggregate scores across several tests. The data bank which

was created by the study should'be valuable for a number of secondary

analyses.

Despite,,these major accomplishments, one need only look back at

Cureton's orig4nal plea for an anchor test study to realize that there

is along way to go to achieve his idq,al. I According. to Cureton, "An

ideal system of. norms should be based on a specially constructed and

.
standardized test, and its units should be stable from year.to year,

from test...to test, and from early childhood to old age. They should

alsO be as directly meaningful as possible in terms of the existing

concepts, of the population in general and the teaching populatioy in ,

particularThe ideal anchor test should yield separate scores for

all the major intellectual factors in the school achievement complex"

(1941; pp: 291-292). We` clearly have a ways tp go. Given the expense

of equating tests of reading at three grade, levels and the fact that

other content areas and other.grade levels pose more difficulties it

seews doubtful ',to me_thatNe.wilI anieve Curetdn's goal.

k
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